首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
CMK-5负载Pt-Ni合金催化剂及其甲醇电化学氧化性能   总被引:2,自引:0,他引:2  
采用NaBH4还原法将不同原子比的铂镍负载于CMK-5(由SBA-15模板所得的碳载体)表面. X射线衍射(XRD)和X射线光电子能谱(XPS)测试结果表明, 所得催化剂是以铂镍合金的形式存在, 相对于Pt/CMK-5而言, 这种合金化的催化剂中Pt表现出更多的金属态. 电化学测试结果显示, 在催化剂中主要以化合态存在的镍(包括NiO、Ni(OH)2和NiOOH)可能更有利于甲醇的吸附和氧化产物从催化剂表面的脱附. 另外, 从循环伏安测试结果可知, Pt-Ni/CMK-5 (5:1)(原子比)具有较大的比表面活性, 其电化学活性面积高达63.9 m2·g-1, 且与Pt/CMK-5相比抗CO中毒能力有明显改善.  相似文献   

2.
We prepared two batches of surface‐enriched (with active sites) polymer‐supported phase‐transfer catalysts (SE‐PSPTC) by fixing the crosslinking monomer divinylbenzene (DVB) at 2% (first batch) and 6% (second batch) through a free‐radical suspension copolymerization method with vinylbenzyl chloride (VBC; 25%) as a functionality and with styrene (St) as a supporting monomer, followed by the quaternization of the resulting terpolymer beads with triethylamine. The enrichment of the active sites on the surfaces of the beads was accomplished by a surface‐grafting technique through the delayed addition of the functional monomer (VBC) to the partially polymerized copolymer beads of poly(St/DVB). To bring the active sites fully onto the surfaces, we prepared six different types of terpolymer beads in each batch by varying the partial polymerization time (PPT) of St/DVB—0 h [0 VBC (conventional)], 3 h (3 VBC), 6 h (6 VBC), 9 h (9 VBC), 12 h (12 VBC), and 15 h (15 VBC)—and then gradually adding the functional monomer (VBC) to the partially polymerized poly(St/DVB) system. The resulting terpolymer beads, containing different concentrations of pendant benzyl chloride (? CH2Cl) on the surface in each batch, underwent facile quaternization [? CH2N+(C2H5)3Cl?] with an increase in the PPT of St/DVB and remained constant at 12 VBC and 15 VBC. To asses the superiority of the catalysts according to the surface enrichment of the active sites, particularly between conventional (0 VBC) catalysts and other PPT‐based SE‐PSPTCs, we characterized all the catalysts by estimating the chloride‐ion concentration, by using Fourier transform infrared (FTIR), scanning electron microscopy (SEM), EDAX, and ESCA, and by carrying out the dichlorocarbene addition to olefins. The chloride‐ion concentration by the Volhard method and the peak intensity of the C? N stretching absorbance concentration, that is, the quaternary onium group in the FTIR spectra of both batches, increased with the PPT of St/DVB in both batches of catalysts. In particular, the chloride concentration of a first‐batch catalyst of a representative mesh size (?120 + 140) had a twofold enhancement between the conventional catalyst (0 VBC; 1.88 m equiv g?1) and 9 VBC/SE‐PSPTC (3.74 m equiv g?1), although the same amount of the functional monomer was added in both preparations. These results showed the higher enrichment of the active site on the surface of 9 VBC, and the same trend was also maintained for second‐batch catalysts, regardless of the catalyst mesh size. SEM images of both batches showed that there was a higher concentration of nodules [due to the grafting of poly(VBC)] on the surfaces of the beads of 9 VBC/SE‐PSPTC and the aforementioned PPT catalysts than on the surfaces of the conventional catalysts (0 VBCs), which exhibited smooth surfaces (because of the simultaneous addition of all three monomers). This observation confirmed the enrichment of active sites on the surfaces. In the EDAX analysis, up to a depth of 0.5–1 μm, the surface chloride concentration increased from 0 VBC to 9 VBC/SE‐PSPTC and remained constant in 12 VBC and 15 VBC, first‐batch catalysts of a representative mesh size (?120 + 140). The same trend was also observed in second‐batch catalysts, indicating the enrichment of the onium group more on the surface in 9 VBC/SE‐PSPTCs. The ESCA analysis, to a depth of about 20–30Å, proved that the concentration of covalent chloride on the surface had increased from 0 VBC (15%) to 9 VBC/SE‐PSPTCs (29%) and remained constant thereafter in first‐batch catalyst; the trend was the same for second‐batch catalysts, also confirming the strong evidence of surface enrichment of the active sites. Similarly, the rate constants of different olefin addition reactions catalyzed by both batches of catalysts also increased from 0 VBC to 9 VBC and remained constant with 12 VBC and 15 VBC catalysts. The twofold increase of the rate constants, regardless of the olefins, for conventional catalysts to 9 VBC/SE‐PSPTCs confirmed the enrichment of the active sites on the surfaces. All these experimental observations proved that 50% of the active sites were successfully brought out from inside the poly(St/DVB) networks to the exterior surfaces, although same amount of VBC was added for the preparation of all the catalyst types. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 347–364, 2003  相似文献   

3.
A synthetic clay (TS-1) was modified with a nonionic surfactant (IGEPAL CO-720) and magnesium oxide. The resulting solid was used as a support of Pt, Mo, and Pt-Mo catalysts. The catalysts were prepared by wet impregnation with aqueous solutions of H(2)PtCl(6)6H(2)O and (NH(4))(6)-Mo(7)O(24)4H(2)O. In both monometallic and bimetallic catalysts, the molybdenum content was 3 wt% and the platinum content was 0.5 or 1 wt%. The surface area of the starting material was 454 m(2)/g and after the modification treatment with IGEPAL it increased up to 649 m(2)/g, while platinum and molybdenum catalysts showed surface areas between 495 and 550 m(2)/g. The reduction profiles showed different Pt and Mo species and the existence of metal-support interactions. The reduced catalysts were more active than those in the unreduced form. The most active catalysts for the ethylbenzene dehydrogenation were those of monometallic Pt (0.5 and 1 wt%) with a maximum styrene conversion around 50%. The presence of Mo species masked Pt atoms and reduced the activity.  相似文献   

4.
Bimetallic core-shell nanostructures are emerging as more important materials than monometallic nanostructures, and have much more interesting potential applications in various fields, including catalysis and electronics. In this work, we demonstrate the facile synthesis of core-shell nanotube array catalysts consisting of Pt thin layers as the shells and Ni nanotubes as the cores. The porous Ni@Pt core-shell nanotube arrays were fabricated by ZnO nanorod-array template-assisted electrodeposition, and they represent a new class of nanostructures with a high electrochemically active surface area of 50.08 m(2) (g Pt)(-1), which is close to the value of 59.44 m(2) (g Pt)(-1) for commercial Pt/C catalysts. The porous Ni@Pt core-shell nanotube arrays also show markedly enhanced electrocatalytic activity and stability for methanol oxidation compared with the commercial Pt/C catalysts. The attractive performances exhibited by these prepared porous Ni@Pt core-shell nanotube arrays make them promising candidates as future high-performance catalysts for methanol electrooxidation. The facile method described herein is suitable for large-scale, low-cost production, and significantly lowers the Pt loading, and thus, the cost of the catalysts.  相似文献   

5.
A novel interfacial hybrid epoxidation catalyst was designed with a new immobilization method for homogeneous catalysts by coating an inorganic support with an organic polymer film containing active sites. The titanium silsesquioxane (TiPOSS) complex, which contains a single-site titanium active center, was immobilized successfully by in-situ copolymerization on a mesoporous SBA-15-supported polystyrene polymer. The resulting hybrid materials exhibit attractive textural properties (highly ordered mesostructure, large specific surface area (>380 m2 g-1) and pore volume (>or==0.46 cm3 g-1)), and high activity in the epoxidation of alkenes. In the epoxidation of cyclooctene with tert-butyl hydrogen peroxide (TBHP), the hybrid catalysts have rate constants comparable with that of their homogeneous counterpart, and can be recycled at least seven times. They can also catalyze the epoxidation of cyclooctene with aqueous H2O2 as the oxidant. In two-phase reaction media, the catalysts show much higher activity than their homogeneous counterpart due to the hydrophobic environment around the active centers. They behave as interfacial catalysts due to their multifunctionality, that is, the hydrophobicity of polystyrene and the polyhedral oligomeric silsesquioxanes (POSS), and the hydrophilicity of the silica and the mesoporous structure. Combination of the immobilization of homogeneous catalysts on two conventional supports, inorganic solid and organic polymer, is demonstrated to achieve novel heterogeneous catalytic ensembles with the merits of attractive textural properties, tunable surface properties, and optimized environments around the active sites.  相似文献   

6.
The surface properties of bimetallic Ni-Pt/SiO2 catalysts with variable Ni/Ni + Pt atomic ratio (0.75, 0.50, and 0.25) were studied using N2O decomposition and N2O reduction by hydrogen reactions as probes. Catalysts were prepared by incipient wetness impregnation of the silica support with aqueous solutions of the metal precursors to a total metal loading of 2 wt %. For both model reactions, Pt/SiO2 catalyst was substantially more active than Ni/SiO2 catalyst. Mean particle size by TEM was about the same (in the range 6-8 nm) for all catalysts and truly bimetallic particles (more than 95%) were evidenced by EDS in the Ni-Pt/SiO2 catalysts. CO adsorption on the bimetallic catalysts showed differences in the linear CO absorption band as a function of the Ni/Pt atomic ratio. Bimetallic Ni-Pt/SiO2 catalysts showed, for the N2O decomposition, a catalytic behavior that points out an ensemble-size sensitive behavior for Ni-rich compositions. For the N2O + H2 reaction, the bimetallic catalysts were very active at low temperature. The following activity order at 300 K was observed: Ni75Pt25 > Ni25Pt75 approximately Ni50Pt50 > Pt. TOF values for these catalysts increased 2-5 times compared to the most active reference catalyst (Pt/SiO2). The enhancement of the activity in the Ni75Pt25 bimetallic catalysts is explained in terms of the presence of mixed Ni-Pt ensembles.  相似文献   

7.
Two Pt single‐atom catalysts (SACs) of Pt‐GDY1 and Pt‐GDY2 were prepared on graphdiyne (GDY)supports. The isolated Pt atoms are dispersed on GDY through the coordination interactions between Pt atoms and alkynyl C atoms in GDY, with the formation of five‐coordinated C1‐Pt‐Cl4 species in Pt‐GDY1 and four‐coordinated C2‐Pt‐Cl2 species in Pt‐GDY2. Pt‐GDY2 shows exceptionally high catalytic activity for the hydrogen evolution reaction (HER), with a mass activity up to 3.3 and 26.9 times more active than Pt‐GDY1 and the state‐of‐the‐art commercial Pt/C catalysts, respectively. Pt‐GDY2 possesses higher total unoccupied density of states of Pt 5d orbital and close to zero value of Gibbs free energy of the hydrogen adsorption (|Δ |) at the Pt active sites, which are responsible for its excellent catalytic performance. This work can help better understand the structure–catalytic activity relationship in Pt SACs.  相似文献   

8.
Four synthetic ion-exchange resins (AH, BH, CH, DH) of different hydrophilic/hydrophobic properties were used as supports for heterogeneous palladium catalysts (A, B, C, D). The resins contained styrene (STY) and 2-(methacryloxy)ethylsulfonic acid (MESA) as the comonomers. Either divinylbenzene (DVB: CH, DH resins) or N,N'-methylenebisacrylamide (MBAA: AH, BH resins) were used as the cross-linker. AH contained also N,N-dimethylacrylamide (DMAA) as the third comonomer. The catalysts (Pd 0.25-0.45% w/w) were obtained by ion-exchanging the acidic forms of the resins with [Pd(OAc)2] and reducing palladium(II) with excess sodium borohydride. The use of NaBH4 also ensured the neutralization of the acidic sites of the supports. No effect of the hydrophilic/hydrophobic properties of the supports was observed in the hydrogenation of cyclohexene and 2-cyclohexen-1-one in methanol, at 25 degrees C and 0.5, 1, and 1.5 MPa, respectively. However, catalysts A and B, containing amido groups provided by either DMAA or MBAA, proved to be more active than C and D. The observed activity enhancement was directly proportional to the nitrogen/ palladium molar ratio in the catalysts. This finding suggests that amido groups promote palladium through a direct interaction with the metal surface.  相似文献   

9.
Bimetallic core‐shell nanostructures are emerging as more important materials than monometallic nanostructures, and have much more interesting potential applications in various fields, including catalysis and electronics. In this work, we demonstrate the facile synthesis of core‐shell nanotube array catalysts consisting of Pt thin layers as the shells and Ni nanotubes as the cores. The porous Ni@Pt core‐shell nanotube arrays were fabricated by ZnO nanorod‐array template‐assisted electrodeposition, and they represent a new class of nanostructures with a high electrochemically active surface area of 50.08 m2 (g Pt)?1, which is close to the value of 59.44 m2 (g Pt)?1 for commercial Pt/C catalysts. The porous Ni@Pt core‐shell nanotube arrays also show markedly enhanced electrocatalytic activity and stability for methanol oxidation compared with the commercial Pt/C catalysts. The attractive performances exhibited by these prepared porous Ni@Pt core‐shell nanotube arrays make them promising candidates as future high‐performance catalysts for methanol electrooxidation. The facile method described herein is suitable for large‐scale, low‐cost production, and significantly lowers the Pt loading, and thus, the cost of the catalysts.  相似文献   

10.
The capillary condensation is affected by micropore and nanopore of catalyst layer on fuel cell. Due to limitation of sluggish mass transport and electrocatalytic activity, to retain the pore skeleton of carbon and metal nanoparticles are very significant for enhanced utilizations of pore structure in electrochemical reaction. Besides, thickness of electrocatalyst layer is very crucial due to one of the factor affected by cell performance of direct methanol fuel cell. Highly loaded four Pt?Ru anode catalysts supported on resorcinol‐formaldehyde (RF) polymer based on meso‐porous carbons (80 wt.% Pt?Ru/carbon cryogel, 80 wt.% Pt?Ru/carbon xerogel and 80 wt.% Pt?Ru/carbon aerogel) and conventional carbon (80 wt.% Pt?Ru/Vulcan XC‐72) were prepared by colloidal method for direct methanol fuel cell. These catalysts were characterized by X‐Ray diffraction (XRD), High resolution transmission electron microscopy (HR‐TEM) and X‐ray photoemission (XPS). The results of CO stripping voltammetry, cyclic voltammetry (CV) and single cell test performed on DMFC show that Pt?Ru/carbon cryogel and Pt?Ru/carbon aerogel exhibits better performances in comparison to Pt?Ru/carbon xerogel and Pt?Ru/Vulcan XC‐72. It is thus considered that particle size, oxidation state of metal and electrochemical active surface area of these catalysts are important role in electrocatalytic activity in DMFC.  相似文献   

11.
Chloromethylated polystyrene was oxidized to aldehydic polystyrene and by reaction of this aldehydic polystyrene resin with furfuryl amine and 2-(amino methyl) pyridine, imine-bounded polystyrene resins 1a and 1b were obtained. Amine-bounded polystyrene resins 1c?C1f were also prepared by direct reaction of chloromethylated polystyrene and amines. These functionalized polystyrene resins were used to immobilize MoO2Cl2 on polystyrene. These functionalized polystyrene resins were characterized with elemental analysis (CHN) and FT-IR spectrum. Polymer-supported catalysts were characterized with FT-IR and neutron activation analysis (NAA). These catalysts were used in oxidation of methyl phenyl sulfide in the presence of H2O2 as oxidant and the results showed that these catalysts were highly active and selective. The reusability of these heterogeneous catalysts was also investigated and the results showed that the supported MoO2Cl2 catalyst on polystyrene via imidazole liker was highly reusable as it was used 15 times in oxidation of methyl phenyl sulfide in the presence of environmental benign oxidant (H2O2) and solvent (H2O) without any decrease in its activity. Then the catalytic activity of these supported catalysts was investigated in oxidation of some aliphatic and aromatic sulfides. Almost all of these supported molybdenum-based catalysts were highly active and selective in the conversion of these sulfides to their corresponding sulfoxides.  相似文献   

12.
To produce efficient ORR catalysts with low Pt content, PtNi porous films (PFs) with sufficiently exposed Pt active sites were designed by an approach combining electrochemical bottom‐up (electrodeposition) and top‐down (anodization) processes. The dynamic oxygen‐bubble template (DOBT) programmably controlled by a square‐wave potential was used to tune the catalyst morphology and expose Pt active facets in PtNi PFs. Surface‐bounded species, such as hydroxyl (OH*, *=surface site) on the exposed PtNi PFs surfaces were adjusted by the applied anodic voltage, further affecting the dynamic oxygen (O2) bubbles adsorption on Pt. As a result, PtNi PF with enriched Pt(111) facets (denoted as Pt3.5 %Ni PF) was obtained, showing prominent ORR activity with an onset potential of 0.92 V (vs. RHE) at an ultra‐low Pt loading (0.015 mg cm?2).  相似文献   

13.
Two different gel‐type resins have been prepared by suspension polymerization using 2 wt % divinylbenzene (DVB) with either p‐vinylbenzyl chloride (pVBC) or a mixture of VBC isomers (~ 70% m‐; ~ 30% p‐). Significant difference in the chlorine content was observed, which was attributed to a more favored hydrolysis process when p‐VBC was used. The presence of hydroxyl groups has been confirmed by elemental microanalytical data and solid‐state 13C cross‐polarization/magic angle spinning (CP‐MAS) nuclear magnetic resonance (NMR) spectra. Hypercrosslinked resins were prepared from both gel‐type precursors by treatment with FeCl3 in 1,2‐dichloroethane (DCE) at 80 °C. The resultant resins showed differences in specific surface area and degree of hydrophilicity. The performance of the hypercrosslinked resins was evaluated in solid‐phase extraction (SPE) of polar compounds, and better results were obtained for the hypercrosslinked resin prepared from p‐VBC that combines a relatively high specific surface area (908 m2 g?1) and somewhat higher oxygen content (3.96 wt % O). © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 1718–1728, 2005  相似文献   

14.
不对称氢甲酰化是合成具有单一光学活性物质(如光学活性的醛、α-氨基酸和醇等)最为重要的反应之一.尽管不对称氢甲酰化反应的研究超过40年,但仍然是催化体系中具有挑战性的课题.该反应涉及到产物的化学选择性、立体选择性和对映体选择性的优化.目前,在Rh催化体系中,使用磷-亚磷酸酯手性配体或双亚磷酸酯配体可以在不对称氢甲酰化反应中取得优异的催化性能.然而在Rh/手性双膦配体催化体系中,不对称氢甲酰化反应性能通常很低.以BINAP配体为例,负载Rh金属后,在催化苯乙烯不对称氢甲酰化反应中,产物的ee值只有25%.同时,由于均相催化体系存在催化剂回收和产物提纯等问题,因此有必要研究多相不对称氢甲酰化反应催化剂.本文使用乙烯基修饰的BINAP配体5,5'-divinyl-BINAP与具有不同结构的共聚单体二乙烯基苯或1,3,5-三乙烯基苯基苯共聚,得到具有不同孔结构的聚合物Poly-1和Poly-2.为了比较,利用线性共聚单体乙二醇二甲基丙烯酸甲酯与乙烯基BINAP共聚得到聚合物Poly-3.上述三种聚合物材料负载金属Rh后,用作苯乙烯不对称氢甲酰化反应的催化剂.固体13C核磁分析表明,三种聚合物材料负载金属后仍然保持较为稳定的C骨架结构.通过31p核磁可以看到,嵌入在材料骨架中的BIANP仍然保持未被氧化的状态.N2物理吸附结果发现Poly-1和Poly-2具有较大的比表面积和孔体积,而Poly-3的比表面积最小.热重分析显示,这些材料具有较高的热稳定性.在不同反应溶剂中催化剂活性差异较大.通过优化反应温度和合成气压力后,催化剂Rh/Poly-1在80℃和0.2 MPa下产物的对映体选择性可高达58.9%,支链醛与直链醛的比值为8.5;而在相同反应条件下,均相催化剂Rh-BINAP的ee值仅为35.3%,但高于Rh/Poly-3.这是由于三个多相催化剂骨架中BINAP周围环境不同所致.前两个催化剂中,BINAP与空间位阻较大的单体相连接,使得反应底物按照特定方向与催化活性位点接触,形成了类似于手性口袋的结构.而Rh/Poly-3中,BIANP周围是线性的共聚单体,不能形成有效的手性口袋结构.Rh/Poly-1重复使用7次后,催化活性没有显著下降.拓展X射线吸收精细结构表征结果表明,Rh/Poly-1催化剂使用前没有Rh-Rh键存在,但经重复使用后,Rh金属部分聚集,生成了Rh-Rh键.球差电镜照片也证实了这一点.  相似文献   

15.
Resins based on vinylbenzyl chloride (VBC) and divinylbenzene (DVB) copolymer were synthesised and used for preconcentration and separation of Au, Pt and Pd from hydrochloric acid solutions. Resulted resins show functionality concentration up to 5,8 mmol/g. The acidity and interference of other ions on the resins sorption were discussed. The sorption capacities of gold, platinum and palladium from hydrochloric solutions reaches to 85, 100 and 60 mg/g and distribution coefficients achieve 50 000 value. Recovery of noble metals revealed average of 60-98% from mulitcomponent solutions.  相似文献   

16.
Re oxo alkylidene surface species are putative active sites in classical heterogeneous Re‐based alkene‐metathesis catalysts. However, the lack of evidence for such species questions their existence and/or relevance as reaction intermediates. Using Re(O)(=CH‐CH=CPh2)(OtBuF6)3(THF), the corresponding well‐defined Re oxo alkylidene surface species can be generated on both silica and silica–alumina supports. While inactive on the silica support, it displays very good activity, even for functionalized olefins, on the silica–alumina support.  相似文献   

17.
Catalytic oxidation at room temperature is recognized as the most promising method for formaldehyde (HCHO) removal. Pt-based catalysts are the optimal catalyst for HCHO decomposition at room temperature. Herein, flower-like hierarchical Pt/NiAl-LDHs catalysts with different [Ni2+]/[Al3+] molar ratios were synthesized via hydrothermal method followed by NaBH4 reduction of Pt precursor at room temperature. The flower-like hierarchical Pt/NiAl-LDHs were composed of interlaced nanoplates and metallic Pt nanoparticles (NPs) approximately 3–4 nm in diameter were loaded on the surface of the Pt/NiAl-LDHs with high dispersion. The as-prepared Pt/NiAl21 nanocomposite was highly efficient in catalyzing oxidation of HCHO into CO2 at room temperature. The high activity of the hierarchical Pt/NiAl21 nanocomposite was maintained after seven recycle tests, suggesting the high stability of the catalyst. Based on in situ diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) studies, a reaction mechanism was put forward about HCHO decomposition at room temperature. This work provides new insights into designing and fabricating high-performance catalysts for efficient indoor air purification.  相似文献   

18.
In the present study, the synthesis of (2-oxo-1,3-dioxolan-4yl)methyl methacrylate from carbon dioxide and glycidyl methacrylate was investigated using polymer-immobilized quaternary ammonium salt catalysts. The catalysts were prepared by emulsion copolymerization of styrene, divinylbenzene and vinylbenzene chloride (VBC). The influence of partial polymerization time, VBC concentration, structure of the trialkyl amine and counter anion of quaternary salts on the catalytic behavior is discussed. The catalytic activity of the immobilized catalysts was maintained even up to 7 repeated experimental runs.  相似文献   

19.
Three-dimensionally ordered macro-porous (3DOM) Pt/TiO2 catalysts were prepared by template and impregna-tion methods, and the resultant samples were characterized by using TG-DTA, XRD, SEM, TEM, and TPR techniques. The catalytic performance for water-gas shift (WGS) reaction was tested, and the influences of some conditions, such as reduction temperature of catalysts, the amount of Pt loadings and space velocity on catalytic performance were investigated. It was shown that Pt particles were homogeneously dispersed on 3DOM TiO2. The reduction of TiO2 surface was important for the catalyticperformance. The activity test results showed that the 3DOM Pt/TiO2 catalysts exhibited very good catalytic performance for WGS reaction even at high space velocity, which was owing to the better mass transfer of 3DOM porous structure besides the high intrinsic activity of Pt/TiO2.  相似文献   

20.
The catalytic characteristics of massive and loaded sulfonic resins in the synthesis of ethyl tert-butyl ether at atmospheric and increased pressures have been compared. It has been established that massive sulfonic resins are more active than loaded resins at atmospheric pressure. At higher pressures, on the other hand, the activity and selectivity of catalysts are greater the lower the content of polymer as a result of the increased effectiveness of the acid centers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号