首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
Qing-Bao Ren  Meng-Bo Luo 《Physics letters. A》2013,377(31-33):1966-1969
We study the dynamics of a two-dimensional vortex system in a strong square pinning array at the second matching field. Two kinds of depinning behaviors, a continuous depinning transition at weak pinning and a discontinuous one at strong pinning, are found. We show that the two different kinds of vortex depinning transitions can be identified in transport as a function of the pinning strength and temperature. Moreover, interstitial vortex state can be probed from the transport properties of vortices.  相似文献   

2.
We analyze a mean-field model of coupled oscillators with randomly distributed frequencies. This system is known to exhibit a transition to collective oscillations: for small coupling, the system is incoherent, with all the oscillators running at their natural frequencies, but when the coupling exceeds a certain threshold, the system spontaneously synchronizes. We obtain the first rigorous stability results for this model by linearizing the Fokker-Planck equation about the incoherent state. An unexpected result is that the system has pathological stability properties: the incoherent state is unstable above threshold, butneutrally stable below threshold. We also show that the system is singular in the sense that its stability properties are radically altered by infinitesimal noise.  相似文献   

3.
The Kuramoto model describes a system of globally coupled phase-only oscillators with distributed natural frequencies. The model in the steady state exhibits a phase transition as a function of the coupling strength, between a low-coupling incoherent phase in which the oscillators oscillate independently and a high-coupling synchronized phase. Here, we consider a uniform distribution for the natural frequencies, for which the phase transition is known to be of first order. We study how the system close to the phase transition in the supercritical regime relaxes in time to the steady state while starting from an initial incoherent state. In this case, numerical simulations of finite systems have demonstrated that the relaxation occurs as a step-like jump in the order parameter from the initial to the final steady state value, hinting at the existence of metastable states. We provide numerical evidence to suggest that the observed metastability is a finite-size effect, becoming an increasingly rare event with increasing system size.  相似文献   

4.
We study how a decrease of the coupling strength causes a desynchronization in the Kuramoto model of N globally coupled phase oscillators. We show that, if the natural frequencies are distributed uniformly or close to that, the synchronized state can robustly split into any number of phase clusters with different average frequencies, even culminating in complete desynchronization. In the simplest case of N=3 phase oscillators, the course of the splitting is controlled by a Cherry flow. The general N-dimensional desynchronization mechanism is numerically illustrated for N=5.  相似文献   

5.
Considering a system of two coupled identical chaotic oscillators, the paper first establishes the conditions of transverse stability for the fully synchronized chaotic state. Periodic orbit threshold theory is applied to determine the bifurcations through which low-periodic orbits embedded in the fully synchronized state lose their transverse stability, and the appearance of globally and locally riddled basins of attraction is discussed, respectively, in terms of the subcritical, supercritical nature of the riddling bifurcations. We show how the introduction of a small parameter mismatch between the interacting chaotic oscillators causes a shift of the synchronization manifold. The presence of a coupling asymmetry is found to lead to further modifications of the destabilization process. Finally, the paper considers the problem of partial synchronization in a system of four coupled R?ssler oscillators.  相似文献   

6.
A phase model for a population of oscillators with random excitatory and inhibitory mean-field coupling and subject to external white noise random forces is proposed and studied. In the thermodynamic limit different stable phases for the oscillator population may be found: (i) an incoherent state where all possible values of an oscillator phase are equally probable, (ii) a synchronized state where the population has a nonzero collective phase; (iii) a glassy phase where the global synchronization is zero but the oscillators are in phase with the random disorder; and (iv) a mixed phase where the oscillators are partially synchronized and partially in phase with the disorder. These predictions are based upon bifurcation analysis of the reduced equation valid at the thermodynamic limit and confirmed by Brownian simulation.  相似文献   

7.
Networks of globally coupled oscillators exhibit phase transitions from incoherent to coherent states. Atoms interacting with the counterpropagating modes of a unidirectionally pumped high-finesse ring cavity form such a globally coupled network. The coupling mechanism is provided by collective atomic recoil lasing, i.e., cooperative Bragg scattering of laser light at an atomic density grating, which is self-induced by the laser light. Under the rule of an additional friction force, the atomic ensemble is expected to undergo a phase transition to a state of synchronized atomic motion. We present the experimental investigation of this phase transition by studying the threshold behavior of this lasing process.  相似文献   

8.
We study the synchronization phenomena in a system of globally coupled oscillators with time delay in the coupling. The self-consistency equations for the order parameter are derived, which depend explicitly on the amount of delay. Analysis of these equations reveals that the system in general exhibits discontinuous transitions in addition to the usual continuous transition, between the incoherent state and a multitude of coherent states with different synchronization frequencies. In particular, the phase diagram is obtained on the plane of the coupling strength and the delay time, and ubiquity of multistability as well as suppression of the synchronization frequency is manifested. Numerical simulations are also performed to give consistent results.  相似文献   

9.
Using Langevin simulations, we have investigated numerically the depinning dynamics of driven two-dimensional colloids subject to the randomly distributed point-like pinning centres. With increasing strength of pinning, we find a crossover from elastic to plastic depinnings, accompanied by an order to disorder transition of state and a substantial increase in the depinning force. In the elastic regime, no peaks are found in the differential curves of the velocity-force dependence (VFD) and the transverse motion is almost none. In addition, the scaling relationship between velocity and force is found to be valid above depinning. However, when one enters the plastic regime, a peak appears in the differential curves of VFD and transverse diffusion occurs above depinning. Furthermore, history dependence is found in the plastic regime.  相似文献   

10.
In this study we investigate the collective behavior of the generalized Kuramoto model with an external pinning force in which oscillators with positive and negative coupling strengths are conformists and contrarians, respectively. We focus on a situation in which the natural frequencies of the oscillators follow a uniform probability density. By numerically simulating the model, it is shown that the model supports multistable synchronized states such as a traveling wave state, π state and periodic synchronous state: an oscillating π state. The oscillating π state may be characterized by the phase distribution oscillating in a confined region and the phase difference between conformists and contrarians oscillating around π periodically. In addition, we present the parameter space of the oscillating π state and traveling wave state of the model.  相似文献   

11.
We study the dynamics of a finite chain of diffusively coupled Lorenz oscillators with periodic boundary conditions. Such rings possess infinitely many fixed states, some of which are observed to be stable. It is shown that there exists a stable fixed state in arbitrarily large rings for a fixed coupling strength. This suggests that coherent behavior in networks of diffusively coupled systems may appear at a coupling strength that is independent of the size of the network.  相似文献   

12.
L&#  Mi  WANG Chun-Ni  TANG Jun  MA Jun 《理论物理通讯》2015,64(6):659-664
For an oscillating circuit or coupled circuits, damage in electric devices such as inductor, resistance, memristor even capacitor can cause breakdown or collapse of the circuits. These damage could be associated with external attack or aging in electric devices, and then the bifurcation parameters could be deformed from normal values. Resonators or signal generators are often synchronized to produce powerful signal series and this problem could be investigated by using synchronization in network. Complete synchronization could be induced by linear coupling in a two-dimensional network of identical oscillators when the coupling intensity is beyond certain threshold. The collective behavior and synchronization state are much dependent on the bifurcation parameters. Any slight fluctuation in parameter and breakdown in bifurcation parameter can cause transition of synchronization even collapse of synchronization in the network. In this paper, a two-dimensional network composed of the resonators coupled with memristors under nearest- neighbor connection is designed, and the network can reach complete synchronization by carefully selecting coupling intensity. The network keeps synchronization after certain transient period, then a bifurcation parameter in a resonator is switched from the previous value and the adjacent resonators (oscillators) are affected in random. It is found that the synchronization area could be invaded greatly in a diffusive way. The damage area size is much dependent on the selection of diffusive period of damage and deformation degree in the parameter. Indeed, the synchronization area could keep intact at largest size under intermediate deformation degree and coupling intensity.  相似文献   

13.
For an oscillating circuit or coupled circuits,damage in electric devices such as inductor,resistance,memristor even capacitor can cause breakdown or collapse of the circuits. These damage could be associated with external attack or aging in electric devices,and then the bifurcation parameters could be deformed from normal values. Resonators or signal generators are often synchronized to produce powerful signal series and this problem could be investigated by using synchronization in network. Complete synchronization could be induced by linear coupling in a two-dimensional network of identical oscillators when the coupling intensity is beyond certain threshold. The collective behavior and synchronization state are much dependent on the bifurcation parameters. Any slight fluctuation in parameter and breakdown in bifurcation parameter can cause transition of synchronization even collapse of synchronization in the network. In this paper,a two-dimensional network composed of the resonators coupled with memristors under nearestneighbor connection is designed,and the network can reach complete synchronization by carefully selecting coupling intensity. The network keeps synchronization after certain transient period,then a bifurcation parameter in a resonator is switched from the previous value and the adjacent resonators(oscillators) are affected in random. It is found that the synchronization area could be invaded greatly in a diffusive way. The damage area size is much dependent on the selection of diffusive period of damage and deformation degree in the parameter. Indeed,the synchronization area could keep intact at largest size under intermediate deformation degree and coupling intensity.  相似文献   

14.
Recently, the phase-flip bifurcation has been described as a fundamental transition in time-delay coupled, phase-synchronized nonlinear dynamical systems. The bifurcation is characterized by a change of the synchronized dynamics from being in-phase to antiphase, or vice versa; the phase-difference between the oscillators undergoes a jump of pi as a function of the coupling strength or the time delay. This phase-flip is accompanied by discontinuous changes in the frequency of the synchronized oscillators, and in the largest negative Lyapunov exponent or its derivative. Here we illustrate the phenomenology of the bifurcation for several classes of nonlinear oscillators, in the regimes of both periodic and chaotic dynamics. We present extensive numerical simulations and compute the oscillation frequencies and the Lyapunov spectra as a function of the coupling strength. In particular, our simulations provide clear evidence of the phase-flip bifurcation in excitable laser and Fitzhugh-Nagumo neuronal models, and in diffusively coupled predator-prey models with either limit cycle or chaotic dynamics. Our analysis demonstrates marked jumps of the time-delayed and instantaneous fluxes between the two interacting oscillators across the bifurcation; this has strong implications for the performance of the system as well as for practical applications. We further construct an electronic circuit consisting of two coupled Chua oscillators and provide the first formal experimental demonstration of the bifurcation. In totality, our study demonstrates that the phase-flip phenomenon is of broad relevance and importance for a wide range of physical and natural systems.  相似文献   

15.
We analyze the phenomenon of frequency clustering in a system of coupled phase oscillators. The oscillators, which in the absence of coupling have uniformly distributed natural frequencies, are coupled through a small-world network, built according to the Watts-Strogatz model. We study the time evolution and determine variations in the transient times depending on the disorder of the network and on the coupling strength. We investigate the effects of fluctuations in the average frequencies, and discuss the definition of the threshold for synchronization. We characterize the structure of clusters and the distribution of cluster sizes in the synchronization transition, and define suitable order parameters to describe the aggregation of the oscillators as the network disorder and the coupling strength change. The non-monotonic behavior observed in some order parameters is related to fluctuations in the mean frequencies.  相似文献   

16.
The amplitude death (AD) phenomenon is found in the relay system in the presence of the mixed couplings composed of attractive coupling and repulsive coupling. The generation mechanism of AD is revealed and shows that the middle oscillator achieving AD is a prerequisite to further suppress oscillation of the outermost oscillators for the paradigmatic Stuart-Landau and Rössler models. Moreover, regarding the Stuart-Landau relay system as a small motif of star network, we also observe that the mixed couplings can facilitate AD state of the whole network system. Particularly, the threshold of coupling strength is invariable with the change of network size. Our findings may shed a new insight to explore the effects of hybrid coupling on complex systems, also provide a new strategy to control dynamic behaviors in engineering science and neuroscience fields.  相似文献   

17.
We investigate the synchronization behaviour of three different networks of nonlinearly coupled oscillators. Each network consists of several clusters of oscillators, and the clusters themselves consist of any number of oscillators. In each cluster the eigenfrequencies scatter around the cluster frequency (mean frequency). The coupling strength varies in each cluster, too. We analyze the synchronized states by means of the center manifold theorem. This enables us to calculate these states explicitly, and to prove their stability. Moreover we are able to determine frequency shifts caused by different coupling mechanisms. In a number of cases we calculate the synchronisation threshold explicitely. Numerical simulations illustrate our analytical results. In one of the three networks we have additionally analyzed a single cluster consisting of infinitely many oscillators, that is an oscillatory field. Again, the center manifold theorem enabled us to calculate the synchronized state explicitly and to prove its stability. Our results concerning the oscillatory field are in contradiction to Ermentrout's analysis [6].  相似文献   

18.
We investigate a system of coupled phase oscillators with nearest neighbors coupling in a chain with fixed ends. We find that the system synchronizes to a common value of the time-averaged frequency, which depends on the initial phases of the oscillators at the ends of the chain. This time-averaged frequency decays as the coupling strength increases. Near the transition to the frozen state, the time-averaged frequency has a power law behavior as a function of the coupling strength, with synchronized time-averaged frequency equal to zero. Associated with this power law, there is an increase in phases of each oscillator with 2pi jumps with a scaling law of the elapsed time between jumps. During the interval between the full frequency synchronization and the transition to the frozen state, the maximum Lyapunov exponent indicates quasiperiodicity. Time series analysis of the oscillators frequency shows this quasiperiodicity, as the coupling strength increases.  相似文献   

19.
Three-body interactions have been found in physics, biology, and sociology. To investigate their effect on dynamical systems, as a first step, we study numerically and theoretically a system of phase oscillators with a three-body interaction. As a result, an infinite number of multistable synchronized states appear above a critical coupling strength, while a stable incoherent state always exists for any coupling strength. Owing to the infinite multistability, the degree of synchrony in an asymptotic state can vary continuously within some range depending on the initial phase pattern.  相似文献   

20.
Chimera states are particular trajectories in systems of phase oscillators with nonlocal coupling that display a spatiotemporal pattern of coherent and incoherent motion. We present here a detailed analysis of the spectral properties for such trajectories. First, we study numerically their Lyapunov spectrum and its behavior for an increasing number of oscillators. The spectra demonstrate the hyperchaotic nature of the chimera states and show a correspondence of the Lyapunov dimension with the number of incoherent oscillators. Then, we pass to the thermodynamic limit equation and present an analytic approach to the spectrum of a corresponding linearized evolution operator. We show that, in this setting, the chimera state is neutrally stable and that the continuous spectrum coincides with the limit of the hyperchaotic Lyapunov spectrum obtained for the finite size systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号