首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In a previous study (Chemical Physics Letters 2005, 401 , 385) we computed the optical rotatory dispersion of (S)-propylene oxide in gas phase and solution using the hierarchy of coupled cluster models CCS, CC2, CCSD, and CC3. Even for the highly correlated CC3 model combined with a flexible basis set, the theoretical gas-phase specific rotation at 355 nm was found to be negative in contrast to the experimental result. We argued that vibrational contributions could be crucial for obtaining a complete understanding of the experimental result. Here, we show that this indeed is the case by using coupled cluster models and density functional theory methods to calculate the vibrational contributions to the gas-phase specific rotation at 355, 589.3, and 633 nm. While density functional theory (B3LYP and SAOP functionals) overestimates the specific rotation at 355 nm by approximately 1 order of magnitude and yields an incorrect sign at 589.3 and 633 nm, the coupled cluster results are in excellent agreement with the experimentally measured optical rotations. We find that all vibrational modes contribute significantly to the optical rotation and that temperature effects must be taken into account.  相似文献   

2.
Ab initio optical rotation data from linear-response coupled-cluster and density-functional methods are compared to both gas-phase and liquid-phase polarimetry data for the small, conformationally flexible molecule epichlorohydrin. Three energy minima exist along the C-C-C-Cl dihedral angle, each with strong, antagonistic specific rotations ranging from ca. -450 to +500 deg/[dm (g/mL)] at 355 nm. Density-functional theory (specifically the B3LYP functional) consistently overestimates the optical rotations of each conformer relative to coupled-cluster theory (in agreement with our earlier observations for conformationally rigid species), and we attribute this to density-functional theory's underestimation of the lowest-lying excitation energies of epichlorohydrin. Length- and velocity-gauge formulations of the coupled-cluster response function lead to slightly different specific rotations (ca. 7% at short wavelengths). We have determined well-converged Gibbs free energy differences among the conformers using complete-basis-set extrapolations of coupled-cluster energies including triple excitations to obtain Boltzmann-averaged specific rotations for comparison to the gas-phase results. The length-gauge coupled-cluster data agree remarkably well with experiment, with the velocity-gauge coupled-cluster and density-functional data bracketing the experimental results from below and above, respectively. Liquid-phase conformer populations reported earlier by Polavarapu and co-workers from combined infrared absorption and theoretical analyses differ markedly from the gas-phase populations, particularly for polar solvents. Nevertheless, Boltzmann-averaged specific rotations from both coupled-cluster and density-functional calculations agree well with the corresponding experimental intrinsic rotations, although the theoretical specific rotations for the individual conformers do not take solvent effects into account. PCM-based estimates of conformer populations lead to poor agreement with experiment.  相似文献   

3.
Adiabatic and vertical ionization potentials (IPs) and valence electron affinities (EAs) of serinamide in the gas phase have been determined using density functional theory (DFT) B3LYP, B3P86, and B3PW91 methods with the 6‐311++G** and 6‐311G** basis sets, respectively. IPs and EAs of serinamide in solution have been calculated with the B3LYP method using the 6‐311++G** and 6‐311G** basis sets. Eight possible conformers of serinamide and its charged states in the gas phase have been optimized employing the DFT B3LYP method with 6‐311++G** and 6‐311G** basis sets, respectively. All the adiabatic and vertical ionization potentials (AIPs and VIPs) of eight serinamide conformers in our work are positive values, whether in the gas phase or in solutions; the IPs in solutions are smaller than the results in the gas phase and decrease with increased dielectric constants in solutions. This finding indicates that the cationic states in solutions are more stable than those in the gas phase. All EAs of eight serinamide conformers are negative values in the gas phase, indicating that the anionic states are unstable with respect to electron autodetachment, both adiabatically and vertically. In contrast, all other adiabatic electron affinities (AEAs) are negative values in solutions except for 6S in water; 7S in chloroform, acetone, and water; and 8S in acetone and water, and increase with increasing of dielectric constants in solutions. All vertical electron affinities (VEAs) are negative values in solutions; however, no good rule has been found for these values in solutions. © 2006 Wiley Periodicals, Inc. Int J Quantum Chem, 2006  相似文献   

4.
The syn- and anti-conformers of 2-tellurophenecarboaldehyde are studied in the gas phase. A transition state is also modelled for the syn-anti isomerisation. Computations are done using different methods namely HF, DFT/B3LYP, MP2 and CCSD(T). The basis set used for all atoms is 6-311++G(d,p) except that LanL2DZ ECP is used for tellurium atom only. The optimised molecular structures and related structural parameters of these conformers are reported. The energy differences between the syn- and anti-conformers, associated rotational barriers and thermodynamic parameters are derived from the computations. The infrared frequencies of these conformers are also reported with appropriate assignments. This study is extended to include solvent effect and the conformers are fully optimised (DFT/B3LYP) using the integral equation formalism in the Polarisable Continuum model. In the gas phase, the theoretical rate constant for the unimolecular conversion, anti conformer to transition state, is reported for the first time; DFT/B3LYP (4.82×10(30) s(-1)) and MP2 (7.81×10(30) s(-1)). It is found that the structures are not much affected by the solvents but energy difference increases and rotational barrier decreases. The results indicate that there is a close agreement with the predictions from the different theoretical methods. The results obtained are critically analysed and compared with the furan, thiophene and selenophene analogues. A major factor affecting conformational preference and the mole fraction is the charge on the chalcogen heteroatom in the ring. An interesting outcome of this work is that in both the gas phase and solutions, the syn conformer is more stable and exists almost exclusively.  相似文献   

5.
Systematic and extensive conformational searches of aspartic acid in gas phase and in solution have been performed. For the gaseous aspartic acid, a total of 1296 trial canonical structures and 216 trial zwitterionic structures were generated by allowing for all combinations of internal single-bond rotamers. All the trial structures were optimized at the B3LYP/6-311G* level and then subjected to further optimization at the B3LYP/6-311++G** level. A total of 139 canonical conformers were found, but no stable zwitterionic structure was found. The rotational constants, dipole moments, zero-point vibrational energies, harmonic frequencies, and vertical ionization energies of the canonical conformers were determined. Single-point energies were also calculated at the MP2/6-311++G** and CCSD/6-311++G** levels. The equilibrium distributions of the gaseous conformers at various temperatures were calculated. The proton affinity and gas phase basicity were calculated and the results are in excellent agreement with the experiments. The conformations in the solution were studied with different solvation models. The 216 trial zwitterionic structures were first optimized at the B3LYP/6-311G* level using the Onsager self-consistent reaction field model (SCRF) and then optimized at the B3LYP/6-311++G** level using the conductorlike polarized continuum model (CPCM) SCRF theory. A total of 22 zwitterions conformers were found. The gaseous canonical conformers were combined with the CPCM model and optimized at the B3LYP/6-311++G** level. The solvated zwitterionic and canonical structures were further examined by the discrete/SCRF model with one and two water molecules. The incremental solvation of the canonical and zwitterionic structures with up to six water molecules in gas phase was systematically examined. The studies show that combining aspartic acid with at least six water molecules in the gas phase or two water molecules and a SCRF solution model is required to provide qualitatively correct results in the solution.  相似文献   

6.
Density functional (BLYP, B3LYP and BHLYP) and highly correlated MP2 and CCSD(T) calculations have been performed to investigate conformers, energy barriers, intramolecular H-bond strength, gas-phase basicity and deprotonation energies of glyoxilic acid oxime (gao) and related ions in gas phase and in aqueous solution (SCRF-PCM method). BHLYP/6-311G(d,p) and B3LYP/6-31++G(d) predictions for the global minimum conformer of gao were consistent with experiment. BLYP level overestimated the H-bond and stabilized incorrectly the H-bonded conformer. The calculations in solution indicated destabilization of H-bonded conformers due to the small polarizability and weaken of the H-bond. The same global minimum structures in gas phase and aqueous solution were found for gao-neutral (ectt) and gao-dianion (e2), whereas they were different for gao-anion because of the strong decrease of the conformational energies in solution. The global minimum structures of the neutral, anion and dianion of gao, obtained in solution, are in agreement with experiment. The gas-phase basicity (GB) and molecular electrostatic potential (MEP) calculations revealed the same sites for electrophilic attack, supported by the nature of HOMO: the carbonylic oxygen for the neutral, the carboxylic oxygen for the anion and the oxime nitrogen for the dianion. MEP results in gas phase and in solution suggested a region between the two atoms, but not on one atom in accordance with bidentate binding of gao ions to a metal. The BHLYP/6-31++G(d,p) molecular properties of gao were in best consistent with CCSD(T) results. The thermodynamical properties (GB and bond deprotonation energy) of gao were better estimated at B3LYP level.  相似文献   

7.
(S)-(-)-2-chloropropionitrile has been prepared from (S)-(+)-alanine, and the ORD curves have been obtained in several solvents and in the gas phase. A reaction field extrapolation of the solution data to the gas phase led to an estimated value of [alpha]D = -21 degrees, whereas the interpolated gas phase value is -8 degrees. The specific rotation was found to be temperature dependent in ethylcyclohexane solution over the range 0-100 degrees C. Although rotation of the methyl group leads to large calculated effects on the specific rotation, it does not lead to the temperature dependence. Rather, a low frequency mode at 224 cm(-1) was found to be responsible. This is a mixed mode involving methyl torsion and C-C[triple bond]N bending. The specific rotations calculated at the B3LYP/aug-cc-pVDZ level including electric field dependent functions are in very good agreement with the measured gas phase values.  相似文献   

8.
Ab initio theoretical methods are used to investigate the gas-phase ion pairs of the ionic liquid 1-butyl-3-methylimidazolium chloride. Multiple stable conformers with the chloride anion positioned (in-plane) around the imidazolium ring or above the C2-H bond are determined. The relative energy ordering of the conformers is examined at the B3LYP, MP2, and CCSD(T) levels. Zero-point energies, BSSE, and basis set effects are examined. For accurate results, correlation (dispersion) effects must be included. The most stable conformers are essentially degenerate and have the chloride H-bonding to, or lying above, the C2-H bond. Other conformers are found to lie approximately 30 and approximately 60 kJ mol(-1) higher in energy. Results are compared with those from recent simulations and experimental studies. The effect of the chloride anion on rotation of the butyl chain is investigated and found to lower some rotational barriers while enhancing others. The origin of the rotational barriers is determined. The number and type of hydrogen bonds formed between the imidazolium cation and chloride anion is found to vary significantly among conformers. No evidence of a possible intra C(alkyl)-H...pi interaction is obtained; however, hints of a Cl...pi interaction are found. The vibrational spectrum of each conformer is examined, and the origin of multiple (H-bonding) features in the vibrational spectrum of the ionic liquid explained.  相似文献   

9.
The FT-IR spectra of two diastereomers of 2,3-butanediol, (R,S) and (S,S), isolated in low-temperature argon and xenon matrixes were studied, allowing the identification of two different conformers for each compound. These conformers were characterized by a +/-gauche arrangement around the O-C-C-O dihedral angle, thus enabling the establishment of a very weak intramolecular hydrogen bond of the O...H-O type. No other forms of these compounds were identified in matrixes, despite the fact that these four conformers had calculated relative energies from 0 to 5.1 kJ mol(-1) and were expected to be thermally populated from 50 to 6% in the gaseous phase of each compound. The nonobservation of additional conformers was explained in terms of low barriers to intramolecular rotation, resulting in the conformational relaxation of the compounds during deposition of the matrixes. The barriers to internal rotation of the OH groups were computed to be less than 4 kJ mol(-1) and are easily overcome in matrixes within the family of conformers with the same heavy atom backbone. The barriers for intramolecular rearrangement of the O-C-C-O dihedral angle in both diastereomers were calculated to range from 20 to 30 kJ mol(-1). Interconversions between the latter conformers were not observed in matrixes, even after annealing up to 65 K. Energy calculations, barriers, and calculated infrared spectra were carried out at the DFT(B3LYP)/6-311++G theory. Additional MP2/6-311++G calculations of energies and vibrational frequencies were performed on the most relevant conformers. Finally, independent estimations of the hydrogen-bond enthalpy in the studied molecules were also obtained based on theoretical structural data and from vibrational frequencies (using well-established empirical correlations). The obtained values for -DeltaH for both diastereomers of 2,3-butanediol amount to ca. 6-8 kJ mol(-1).  相似文献   

10.
The conformational behavior of a 1,3-diazacyclohexane system has been investigated using the DFT B3LYP/6-311+G** level of theory. The structural parameters and relative energies predicted that anomeric effects are operative in the conformations of 1,3-diazacyclohexane. The stability of conformers predicted in the solvent continuum model (water and acetonitrile) is similar to the gas-phase results. The explicit water molecules stabilized the least-stable conformer, and the predictive trend is opposite to that of the gas-phase results. The stability of the conformers in the gas phase is a compromise between avoiding repulsions and maximizing hyperconjugative stabilization. The NBO analysis suggests that the interactions of explicit solvent molecules with 1,3-diazacyclohexane conformers attenuate the anomeric stabilization. The hydrogen-bonding interactions of explicit solvent molecules with 1,3-diazacyclohexane swamped the anomeric effects to alter the conformational stability compared to the gas-phase and solvent continuum model studies.  相似文献   

11.
The unstable trifluoroacetonitrile N-oxide molecule, CF3CNO, has been generated in high yield in the gas phase from CF3BrC=NOH and studied for the first time by gas-phase mid-infrared spectroscopy. Cold trapping of this molecule followed by slow warming forms the stable ring dimer, bis(trifluoromethyl)furoxan, also investigated by gas-phase infrared spectroscopy. The spectroscopy provides an investigation into the vibrational character of the two molecules, the assignments supported by calculations of the harmonic vibrational frequencies using in the case of CF3CNO both ab initio (CCSD(T)) and density functional theory (B3LYP) and B3LYP for the ring dimer. The ground-state structures of both molecules were investigated at the B3LYP level of theory, with CF3CNO further investigated using coupled-cluster. The CCSD(T) method suggests a slightly bent (C(s)) structure for CF3CNO, while the B3LYP method (with basis sets ranging from 6-311G(d) to cc-pVTZ) suggests a close-to-linear or linear CCNO chain. The CCN bending potential in CF3CNO was explored at the CCSD(T)(fc)/cc-pVTZ level, with the results suggesting that CF3CNO exhibits strong quasi-symmetric top behavior with a barrier to linearity of 174 cm(-1). Since both isomerization and dimerization are feasible loss processes for this unstable molecule, the relative stability of CF3CNO with respect to the known cyanate (CF3OCN), isocyanate (CF3NCO), and fulminate (CF3ONC) isomers and the mechanism of the dimerization process to the ring furoxan and other isomers were studied with density functional theory.  相似文献   

12.
The specific rotations of 2-substituted butanes (X = F, Cl, CN, and HCC) were calculated at the B3LYP/aug-cc-pVDZ level as a function of the C-C-C-C torsion angle. The results for the four compounds are remarkably similar, despite large differences in the electronic transition energies. The temperature dependence of the specific rotations for 2-methylbutyronitrile and for 2-chlorobutane was studied to give experimental information about the effect of the torsion angle on the specific rotation. The results were in good accord with B3LYP/aug-cc-pVDZ calculations. The specific rotations derived from the study of 2-chlorobutane are similar to those previously obtained for 3-chloro-1-butene, indicating that the double bond does not have a large effect on the optical rotations, but it did lead to a large difference between calculated and observed specific rotations.  相似文献   

13.
The conventional strain energies of 1,2-dihydroazete, 2,3-dihydroazete, 1,2-dihydrophosphete, and 2,3-dihydrophosphete are determined within the isodesmic, homodesmotic, and hyperhomodesmotic models. Optimum equilibrium geometries, harmonic vibrational frequencies, and corresponding electronic energies and zero-point vibrational energies are computed for all pertinent molecular systems using SCF theory, second-order perturbation theory, and density functional theory and employing the correlation consistent basis sets cc-pVDZ, cc-pVTZ, and cc-pVQZ. Single-point fourth-order perturbation theory, CCSD, and CCSD(T) calculations employing the cc-pVTZ and the cc-pVQZ basis sets are computed using the MP2/cc-pVTZ and MP2/cc-pVQZ optimized geometries, respectfully, to ascertain the contribution of higher order correlation. Three DFT functionals, B3LYP, wB97XD, and M06-2X, are employed to determine whether they can yield results similar to those obtained at the CCSD(T) level.  相似文献   

14.
The conformers of cycloheptane through cyclodecane have been examined at the B3LYP/6-311+G* and MP2/6-311+G* theoretical levels, with some additional calculations at the CCD/6-311+G* and CCSD(T)/6-311++G** levels. With cyclooctane, B3LYP predicts that the boat-chair and crown conformers have similar energies, whereas MP2 and CCSD(T) predict that the crown conformer is 2 kcal/mol higher in energy. The latter is in agreement with the electron diffraction data. With cyclononane, B3LYP predicts that two of the higher-energy conformers found in molecular mechanics calculations should convert to one of the lower-energy conformers. However, MP2/6-311+G* optimizations find them to be true minima on the potential energy surface. B3LYP systematically predicts larger C-C-C bond angles for these compounds than either MP2 or CCD. The results of molecular mechanics MM4 calculations are generally in good agreement with those obtained using MP2.  相似文献   

15.
The experimental mid- and far-IR spectra of six conformers of phenylalanine in the gas phase are presented. The experimental spectra are compared to spectra calculated at the B3LYP and at the MP2 level. The differences between B3LYP and MP2 IR spectra are found to be small. The agreement between experiment and theory is generally found to be very good, however strong discrepancies exist when -NH2 out-of-plane vibrations are involved. The relative energies of the minima as well as of some transition states connecting the minima are explored at the CCSD(T) level. Most transition states are found to be less than 2000 cm(-1) above the lowest energy structure. A simple model to describe the observed conformer abundances based on quasi-equilibria near the barriers is presented and it appears to describe the experimental observation reasonably well. In addition, the vibrations of one of the conformers are investigated using the correlation-corrected vibrational self-consistent field method.  相似文献   

16.
The vapour over solid SeBr(4) at 10 degrees C was investigated with a combined gas-phase electron diffraction/mass spectrometric (GED/MS) method. The composition of the vapour derived from the mass spectra (43% SeBr(2), 56.7% Br(2) and 0.3% Se(2)Br(2)) was in agreement with the composition obtained from the analysis of the simultaneously recorded GED intensities (41(3)% SeBr(2), 59(3)% Br(2)). The GED study results in the following geometric parameters (r(g), angle(g) values with total uncertainties): Se-Br = 2.306(5) A and Br-Se-Br = 101.6(6) degrees . Most quantum chemical approximations (B3LYP, MP2, CCSD and CCSD(T) with relativistic effective core potentials and cc-pVTZ as well as aug-cc-pVTZ basis sets for the outer shells) overestimate the Se-Br bond length by 0.01 to 0.03 A. All methods reproduce the bond angle correctly, except for the B3LYP method. Gas phase vibrational frequencies estimated from experimental vibrational amplitudes agree well with those measured by Raman spectroscopy in acetonitrile solutions. All computational methods overestimate vibrational frequencies, especially that for the symmetric stretch vibration, by about or 8 to 13%.  相似文献   

17.
Experimental and theoretical specific optical rotations (OR) of anhydro, epithio, and epiminoderivatives of methyl tetrofuranosides in chloroform solutions have been compared and used as a tool for exploring their conformational behavior. The potential energy surfaces of these saccharides with reduced flexibility were examined with the density functional theory and the MP2 and CCSD(T) wavefunctions methods. Theoretical ORs were obtained by Boltzmann averaging of values calculated for local minima. Resultant rotations could be used to assess the quality of the DFT and MP2 relative conformer energies. OR values calculated for equilibrium geometries in vacuum were significantly improved when the solvent was accounted for by a polarizable continuum model and first and diagonal second OR derivatives were used for an anharmonic vibrational averaging. The DFT used as a default method reproduced the experimental data fairly well. A modified B3LYP functional containing 70% of HF exchange further improved the results. Because of the strong dependence of OR on the conformation, not only the absolute configuration could be determined, but also the conformational populations were estimated. Likewise, the predicted dependence of OR on the light wavelength well agreed with experiment. The increasing precision of the contemporary computational methods thus makes it possible to relate the specific rotation to more detailed features in molecular structure. © 2010 Wiley Periodicals, Inc. J Comput Chem 2010  相似文献   

18.
The conformers of allyl alcohol and allyl mercaptan were studied with B3LYP/aug-cc-pVTZ method. Their relative energies were calculated at MP3, MP4(SDQ), and CCSD(T) levels. The most stable conformers for these two molecules are Gauche-gauche' (Gg'). The theo-retical photoelectron spectra simulated with the calculated ionization energies demonstrate that there are at least four conformers in allyl alcohol and four conformers in allyl mercaptan in the gas-phase experiments. The Dyson orbitals of the highest occupied molecular orbital (HOMO) and the next HOMO (HOMO-1) of allyl mercaptan Gg' conformer show strongly mixing nS and πC=C characteristics, which may be due to the resonance and inductive effects between πC=C and nS in HOMO-1 and HOMO.  相似文献   

19.
We have theoretically investigated the low energy conformers of neutral glycine (NH(2)CH(2)COOH) and its isomer methylcarbamic acid (CH(3)NHCOOH) in the gas phase. A total of 16 different levels of the theory, including CCSD(T), MP2 and B3LYP methods with various Pople and Dunning type basis sets with and without polarization and diffuse functions were used. We found eight low energy glycine conformers, where the heavy atoms in three have a planar backbone, and four low energy methylcarbamic acid conformers all with non-planar backbones. Interestingly at all levels of theory, we found that the most stable methylcarbamic acid conformer is significantly lower in energy than the lowest energy glycine conformer. The MP2 level and single point CCSD(T) calculations show the lowest energy methylcarbamic acid conformer to be between 31 to 37 kJ mol(-1) lower in energy than the lowest energy glycine conformer. These calculations suggest that methylcarbamic acid might serve as a precursor to glycine formation in the Interstellar Medium (ISM). We also report the theoretical harmonic vibrational frequencies, infrared intensities, moment of inertia, rotational constants and dipole moments for all of the conformers. In order to understand how glycine or methylcarbamic acid might be formed in the ISM, larger calculations which model glycine or its isomer interacting with several surrounding molecules, such as water, are needed. We demonstrate that B3LYP method should provide a reliable and computationally practical approach to modeling these larger systems.  相似文献   

20.
The gas-phase lithium cation basicities (LCB values, Gibbs free energies of binding) of alpha,omega-diphenylalkanes Ph-(CH(2))(n)-Ph (n=2, 3, or 7) and 1,1-diphenylethane Ph-CH(Me)-Ph were investigated by means of Fourier-transform ion cyclotron resonance (FTICR) mass spectrometry. Their structures, and those of the corresponding Li(+) complexes were optimized at the B3LYP/6-31G(d) level and their relative stabilities calculated at the B3LYP/6-311+G(3df,2p)//B3LYP/6-31G(d) level. Whereas the most stable conformers of the free diphenylalkanes were found to adopt a completely stretched aliphatic chain connecting the two benzene rings, the most stable Li(+) complexes correspond to conformers in which the alkali metal cation interacts simultaneously with both benzene rings through the folding of the aliphatic chain ("pincer effect"). This chelation brings about a significant enhancement of the Li(+) binding enthalpies (LBE values), which were calculated to be approximately 75 kJ mol(-1) higher than those evaluated for conventional (singly coordinated) pi complexes in which the metal cation interacts with only one of the benzene rings. The increase of the corresponding lithium cation basicities, however, (Gibbs free energies of Li(+) binding, LCB values) was calculated to be smaller by approximately 15 kJ mol(-1) as the pincer effect is entropically disfavored. The good agreement between the calculated LCB values, assuming a statistical distribution of the different conformers present in the gas phase, and the experimental LCB values measured by means of FTICR mass spectrometry are considered indirect evidence of the existence of the pincer effect.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号