首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 398 毫秒
1.
2.
A new family of covalently linked ‘Sn(IV) porphyrin-anthracene’ diad (1), triad (2) and tetrad (3) donor-acceptor (D-A) systems have been designed and synthesized in good-to-moderate yields. While diad 1 possesses one anthracene subunit at the peripheral (meso) position of the tin(IV) porphyrin scaffold, triad 2 possesses twotrans axial anthracene subunits at the tin(IV) centre. On the other hand, tetrad 3 is endowed with both the peripheral and axial anthracene subunits in its architecture. These D-A systems have been fully characterised by elemental analysis, FAB-MS, UV-Vis,1H and13C NMR and electrochemical methods. UV-Vis,NMR and redox data suggest the absence of intramolecular π-π interaction between the porphyrin and the anthracene/s in 1–3. Fluorescence from the anthracene subunit in 1 and 3 is found to be quenched in comparison with the fluorescence of free anthracene in four different solvents. This is not the case with compound 2. Excitation spectral data provides evidence for an intramolecular excitation energy transfer (EET) from the singlet anthracene to the porphyrin in 1 and 3. The energy transfer efficiency is in the order: 2 (almost negligible) < 3 (~30%) < 1 (nearly quantitative), with the peripheral anthracene → porphyrin pathway being largely favoured. This orientation dependence of EET could be analysed using Forster's dipole dipole mechanism.  相似文献   

3.
Two covalently linked diphenyl ethyne bridged unsymmetrical dyads containing porphyrin and BF2–oxasmaragdyrin and Zn(II)porphyrin and BF2–oxasmaragdyrin units and one covalently linked triad containing Zn(II)porphyrin, porphyrin and BF2–oxasmaragdyrin units were synthesized by coupling appropriate functionalized macrocycles under Pd(0) coupling reaction conditions. The dyads and triad were freely soluble in common organic solvents and confirmed by ES-MS spectra. 1D and 2D NMR techniques were used to characterize the dyads and triad. Absorption and electrochemical studies of dyads and triad showed the overlapping features of the constituted macrocycles indicating that the macrocycles retain their basic features in the dyads and triad. The BF2–oxasmaragdyrin absorbs at lower energy and emits strongly in the visible region compared to porphyrin/Zn(II)porphyrin. Thus, BF2–oxasmaragdyrin acts as energy acceptor and porphyrin/Zn(II) porphyrin act as energy donor in dyads and triad. The steady state and time-resolved fluorescence studies supported an efficient energy transfer from porphyrin/Zn(II)porphyrin to BF2–oxasmaragdyrin unit in dyads and triad.  相似文献   

4.
WANG  Chengyun  TANG  Wei  ZHONG  Hanbin  ZHANG  Xuechao  SHEN  Yongjia 《中国化学》2009,27(10):2020-2024
Novel porphyrin‐perylene diimide dyad (TPP‐PDI) and porphyrin‐perylene diimide‐porphyrin triad (TPP‐PDI‐TPP) were synthesized and characterized. Their structure and properties were studied by UV, FL, 1H NMR, MS, elemental analysis, etc. The variation of fluorescence feature and UV spectra of TPP‐PDI‐TPP triad were investigated at different concentration of CF3COOH in THF. The incorporation of CF3COOH leads to the closure of the efficient charge transfer decay. After protonation of porphyrin units, the fluorescence intensity of TPP‐PDI‐TPP triad increased greatly. The fluorescence intensity of TPP‐PDI‐TPP triad restored after addition of triethylamine into the solution. Thus, TPP‐PDI‐TPP triad was a proton‐type fluorescence switch based on acid‐base control. Moreover, different from porphyrin‐perylene type molecular switches reported before, this TPP‐PDI‐TPP triad has wonderful solubility in organic solvents.  相似文献   

5.
Supramolecular porphyrin self-assemblies have been prepared from butadiyne-linked bis(imidazolylporphyrin) by complementary coordination of imidazole to zinc, and their two-photon absorption (2PA) and higher-order nonlinear absorption properties were investigated over femtosecond time scales using an open-aperture Z-scan method. The self-assembled porphyrin dimer of the conjugated monozinc bisporphyrin 7D was shown to have a large 2PA cross section (7.6 x 10(3) GM, where 1 GM = 10(-50) cm(4) s molecule(-1) photon(-1)) at 887 nm. By comparison of this result with that for a meso-meso-linked porphyrin array without the butadiyne connection (3.7 x 10(2) GM at 964 nm), it was demonstrated that the predominant factor in this significant enhancement of the cross section was the expansion of porphyrin-porphyrin pi-conjugation. Self-coordination and monozinc metalation were also found to be contributing factors. Furthermore, a novel self-assembled porphyrin polymer 8P consisting of a biszinc complex with a mean molecular weight of M(n) = 1.5 x 10(5) Da was shown to exhibit an extraordinarily large two-photon absorption cross section (4.4 x 10(5) GM at 873 nm). Nanosecond Z-scan experiments for 7D and 8P were also undertaken and resulted in the measurement of large effective 2PA cross sections, including the excited-state absorption (2.1 x 10(5) GM for 7D and 2.2 x 10(7) GM for 8P, respectively). Finally, three-photon absorption was observed by femtosecond Z-scan experiments at 1188 nm (7.1 x 10(-89) m(6) s(2)) and 1282 nm (1.8 x 10(-89) m(6) s(2)), an observation which is the first of its kind in porphyrin chemistry.  相似文献   

6.
This paper describes the self-assembly of a new class of foldamer-based molecular tweezers, whose rigid folded conformations are stabilized by intramolecular hydrogen bonding. Two zinc porphyrin units are introduced to the ends of molecular tweezers Zn(2)1 and Zn(2)2, while three zinc porphyrin units are incorporated to the S-shaped bi-tweezers Zn(3)3, which may be regarded as a combination of two Zn(2)1 molecules. Due to the preorganized U-shaped feature, Zn(2)1 and Zn(2)2 are able to strongly complex C60, C70, and C60 derivative 25 in chloroform or toluene in a 1:1 binding stoichiometry, whereas Zn(3)3, which possesses two tweezer units, complexes the guests in a 1:2 stoichiometry. More stable complex Zn(3)3.24 is formed between Zn(3)3 and 24, a linear molecule bearing two C60 moieties at the ends, as a result of the cooperative interaction of two binding sites. Chiral induction is observed for all the three receptors upon complexation with C60-incoporated chiral phenylalanine derivative 29, although the complexation of 29 by the folding receptors is pronouncedly weaker than that of C60 and 25 due to increased steric hindrance. The driving force for the formation of the complexes is the well established pi-pi stacking between the zinc porphyrin and fullerene units. The 1H and 13C NMR, UV-vis, fluorescent, and circular dichroism spectroscopy have been used to investigate the complexing behavior of the folding receptors and the fullerene guests. The association constants of the corresponding complexes in toluene and chloroform (if possible) have been evaluated with the UV-vis and fluorescent titration experiments.  相似文献   

7.
Compared to 2PE (two-photon excitation) microscopy, 3PE microscopy has superior spatial resolution, deeper tissue penetration, and less defocused interference. The design of suitable agents with a large Stokes shift, good three-photon absorption (3PA), subcellular targeting, and fluorescence lifetime imaging (FLIM) properties, is challenging. Now, two IrIII complexes (3PAIr1 and 3PAIr2) were developed as efficient three-photon phosphorescence (3PP) agents. Calculations reveal that the introduction of a new group to the molecular scaffold confers a quadruple promotion in three-photon transition probability. Confocal and lifetime imaging of mitochondria using IrIII complexes as 3PP agents is shown. The complexes exhibit low working concentration (50 nm ), fast uptake (5 min), and low threshold for three-photon excitation power (0.5 mW at 980 nm). The impressive tissue penetration depth (ca. 450 μm) allowed the 3D imaging and reconstruction of brain vasculature from a living specimen.  相似文献   

8.
We report the Negishi coupling based synthesis of 1,2,3-tri(9-anthryl)benzene derivatives containing three radially arranged anthracenes in a π-cluster. In the crystalline state of the unsubstituted derivative, intermolecular π–π and CH–π interactions between the anthracene units drive the formation of the two-dimensional packing structure. Owing to though-space π-conjugation between anthracene units, the substances have unique electronic properties. The excited-state dynamic behavior occurring between the three anthracene moieties, such as exciton localization/delocalization, was elucidated by means of transient absorption measurements and quantum chemical calculations. Interestingly, even though the three anthracenes are closely oriented with approximately 3.0 Å between their C-9 positions, exciton localization on two anthracene units is energetically favorable because of the flexible nature of the radially arranged aromatic rings.  相似文献   

9.
Self‐assembled porphyrins via noncovalent bonding have attracted wide‐ranging researchers in material science. We reported herein the synthesis of the tetraphenyl porphyrin derivatives bearing uracyl groups as acceptor–donor–acceptor (ADA) type hydrogen bonding units, through the condensation of 5,10‐ or 5,15‐bis (3‐amino‐4‐ethylhexylphenyl) porphyrin derivatives with 6‐carboxyuracyl derivatives. When two porphyrins having uracyl groups at the different substituted positions were respectively mixed with a melamine derivative in benzene, 1H NMR spectra showed that the 5,15 substituted uracyl porphyrin formed a hydrogen‐bonded suprastructure with the melamine derivative as a complementary molecule to the uracyl moiety, although the other 5,10‐substituted uracylporphyrin could not form such a structure. The SEM observation indicated that the mixture with the 5,15‐substituted uracyl porphyrin and the melamine with long alkyl chains formed a sheet‐like structure. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

10.
Small three-photon absorption (3PA) cross-section values of present nonlinear organic molecules limit their practical applications. Although electron donors and electron acceptors have a great effect on 3PA cross-section, little is known about how the strength and situation of electron acceptors influence the 3PA cross-section value of a compound. The present work reports 3PA effects of two fluorene derivatives with symmetric D-π-π(A)-π-D archetype, which are named as 2,7-bis(4-methoxyphenylacetylene)-9-fluorenone (FATT) and 2,7-bis(4-methoxyphenylacetylene)-9-thoine-fluorene (TSATL). Large 3PA cross-section and ideal 3PA-induced optical limiting effects have been found in the two fluorene derivatives. The two molecules both have a different electron acceptor on the fluorene core, by which the 3PA cross-section value for FATT is enhanced by nearly 3-fold compared with that for TSATL. The mechanism of this significant enhancement in 3PA cross-section has been investigated by density functional theory (DFT) and configuration interaction singles (CIS) method with use of 6-311+G basis set in combination with conductor polarizable continuum model (CPCM). The theoretical results show that increase of electronegative character of the electron acceptor on the core is responsible for the increase of 3PA cross-section values of the two molecules.  相似文献   

11.
Among three noble-metal-free molecular devices (1-3) containing a porphyrin photosensitizer and a cobaloxime catalyst, the one with a zinc porphyrin unit displayed apparently higher efficiency for photoinduced H(2) production than complex 2 with a magnesium porphyrin and 3 with a free-base porphyrin, possibly due to the formation of a TEAZnPor-Co triad in solution.  相似文献   

12.
Zinc porphyrin-appended dendrimers, 12PZn, 18PZn, 24PZn, and 36PZn, containing 12, 18, 24, and 36 zinc porphyrin units, respectively, were synthesized using zinc porphyrin dyad (2PZn) and triad (3PZn) as precursors. Although these dye-functionalized dendrimers all serve as chiroptical sensors for an asymmetric bipyridine (RR- and SS-Py2), the sensing capability is highly dependent on the structure of the dendritic scaffold. 2PZn, which is chiroptically silent toward Py2, turns cooperative and displays a large ICD (induced circular dichroism) response in the visible region when incorporated into 12PZn. Judging from the extents of contribution of each zinc porphyrin unit to the CD amplitudes ([Deltaepsilonmax]), the cooperativity in 24PZn (112 M-1 cm-1) is lower than that in 12PZn (196 M-1 cm-1) and much lower in dendron 4PZn (59 M-1 cm-1). In contrast, 3PZn, which is ICD-active toward Py2, hardly shows such an enhanced cooperativity when incorporated into 18PZn and 36PZn and dendron 6PZn, as well. Absorption spectroscopy suggests some unique conformational characteristics of the zinc porphyrin units in highly cooperative 12PZn.  相似文献   

13.
发展关联电子体系的多参考组态相互作用方法, 应用态求和的张量方法, 计算研究了三种扩展卟啉分子的多光子吸收特性. 计算结果表明, 通过中间插入噻吩杂环基团, 扩展卟啉分子的双光子和三光子吸收峰发生较大红移, 对应的吸收截面得到显著的提高, 并且三光子吸收截面的增加更为明显; 但是由于卟啉环扩大导致分子平面发生扭曲, 三光子吸收截面的增大趋势明显减弱.  相似文献   

14.
We have calculated the multiphoton absorption cross-sections for three expanded porphyrin derivatives using the sum-over-states-involved tensor approach in combination with the strongly correlated multireference determinant single- and double-configuration interaction method. The calculated results showed that the two- and three-photon energies corresponding to the first peak of the multiphoton absorption spectra showed a decrease (red-shifted) with the number of inserted thiophene groups, whereas the cross sections showed a remarkable increase, particularly for three-photon absorption cross-section. However, the larger twist of the molecular plane for the expanded molecule resulted in an obvious drop in the increasing trend for three-photon absorption cross-section.  相似文献   

15.
S. Punidha 《Tetrahedron》2008,64(34):8016-8028
Covalently linked diarylethyne bridged unsymmetrical porphyrin triad containing ZnN4, N4, and N2S2 porphyrin sub-units and porphyrin tetrad containing ZnN4, N4, N3S, and N2S2 porphyrin sub-units were synthesized over sequence of Pd(0) mediated coupling reactions. The triad and tetrad are freely soluble in all common organic solvents and characterized by ES-MS, NMR, absorption, fluorescence, and electrochemical techniques. The 1H NMR, absorption, and electrochemical studies indicated a weak interaction between the porphyrin sub-units of porphyrin triad and porphyrin tetrad. The steady state and time-resolved fluorescence studies supported an energy transfer from one end of porphyrin array to the other end. This kind of porphyrin arrays containing different porphyrin sub-units will be useful for molecular electronics applications.  相似文献   

16.
The porphyrin-sexithiophene-fullerene triad 2, where the two central thiophene units of the sexithiophene spacer are bridged with a crown-ether-like polyether chain, undergoes efficient intramolecular electron transfer from the photoexcited porphyrin moiety to the fullerene through the sexithiophene. However, complexation with a sodium cation in the crown ether ring causes complete suppression of electron transfer as a result of a drastic conformational change of the sexithiophene backbone. Furthermore, decomplexation resumes the photoinduced electron transfer. This on/off switching phenomenon indicates that the polyether-bridged sexithiophene can function as a complexation-gated molecular wire.  相似文献   

17.
In this article, we report the pure three-photon absorption effects of two novel symmetrical fluorene-based molecules with 2D-pi-2D [9,9-diethylhexyl-2,7-bis-(N,N-diphenylamine)fluorene] and 2D-D-pi-D-2D [5,5'-(9,9-bis-(2-ethylhexyl)-9H-fluorene-2-yl)bis(N,N-diphenylthiophen-2-amine)] structural motifs. The obtained three-photon absorption cross sections, (4.74 +/- 0.01) x 10(-76) and (6.77 +/- 0.02) x 10(-76) cm(6) s(2) for the 2D-pi-2D and 2D-D-pi-D-2D archetypes, respectively, are rather high. The geometries and electronic excitations of the two molecules were systematically studied by the PM3 and ZINDO/S methods. The influence of the different molecular structures on the three-photon absorption cross section is discussed micromechanically. The experimental and theoretical results demonstrate that the transition dipole moment between the ground and final states is the most definitive factor. A new fitting method that is more accurate than those reported previously was used to obtain the 3PA coefficient.  相似文献   

18.
3-Bromo boron dipyrromethene (3-bromo BODIPY) has been used as key synthon to prepare one ethynyl bridged and six ethynylphenyl bridged BODIPY-chromophore conjugates using mild Pd(0) coupling conditions. The chromophores possessing very distinct features, such as anthracene, BODIPY, terpyridine, porphyrin, Zn(II)porphyrin, 21,23-dithiaporphyrin and thiasapphyrin were connected at 3-position of boronboron-dipyrromethene dye by coupling of 3-bromo BODIPY with ethynyl or ethynylphenyl chromophore in toluene/triethylamine in the presence of catalytic amount of AsPh3/Pd2(dba)3 at 40 °C followed by column chromatographic purification. The spectral studies indicated that the interaction is stronger in ethynyl bridged BODIPY-chromophore conjugate compared to ethynylphenyl bridged BODIPY-chromophore conjugates. The steady-state fluorescence indicated that in ethynyl bridged BODIPY-anthracene conjugate, the BODIPY unit act as energy acceptor and showed a possibility of energy transfer from donor anthracene unit to acceptor BODIPY unit on selective excitation of anthracene unit. However, in ethynylphenyl bridged BODIPY-porphyrin conjugates, the BODIPY unit act as energy donor and exhibited a possibility of singlet-singlet energy transfer from BODIPY unit to porphyrin unit.  相似文献   

19.
Increasing the chemical diversity of organic semiconductors is essential to develop efficient electronic devices. In particular, the replacement of carbon-carbon (C−C) bonds with isoelectronic boron-nitrogen (B−N) bonds allows precise modulation of the electronic properties of semiconductors without significant structural changes. Although some researchers have reported the preparation of B2N2 anthracene derivatives with two B−N bonds, no compounds with continuous multiple BN units have been prepared yet. Herein, we report the synthesis and characterization of a B2N2 anthracene derivative with a BNBN unit formed by converting the BOBN unit at the zigzag edge. Compared to the all-carbon analogue 2-phenylanthracene, BNBN anthracene exhibits significant variations in the C−C bond length and a larger highest occupied molecular orbital–lowest unoccupied molecular orbital energy gap. The experimentally determined bond lengths and electronic properties of BNBN anthracene are confirmed through theoretical calculations. The BOBN anthracene organic light-emitting diode, used as a blue host, exhibits a low driving voltage. The findings of this study may facilitate the development of larger acenes with multiple BN units and potential applications in organic electronics.  相似文献   

20.
Based on essential-state models for three-photon absorption (3PA), we have investigated the structure-property relationships for stilbene-based dipolar and quadrupolar chromophores. The emphasis lies on the evolution of the 3PA cross section with the degree of ground-state polarization. For dipolar systems, we find a dominant role played by Deltamu, which expresses the change in dipole moment between the ground state and the 3PA active excited state. Thus, the strategies usually applied to maximize the second-order polarizability beta are also applicable to optimize the 3PA cross section. For quadrupolar systems, the 3PA response is dominated by contributions from channels including various low-lying two-photon allowed states, which limits the applicability of essential-state models. Optimization strategies can be proposed but vary for different ranges of ground-state polarization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号