首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Conductivity of perovskite phosphate–substituted solid solutions of Ba4Ca2Nb2 x P x O11 (0.0 ≤ x ≤ 0.5) was studied as a function of temperature, partial pressure of oxygen and water vapors. It is proved that the studied systems are protonic conductors at the temperatures below 600°C in the atmosphere with elevated content of water vapors (pH2O = 1.92 × 10–2 atm). Introduction of the tetrahedral [PO4] group in the complex oxide matrix of Ba4Ca2Nb2O11 results in an increase in the oxygen–ionic (dry air, pH2O = 1.91 × 10–4 atm) and protonic conductivities (wet air, pH2O = 1.92 × 10–2 atm). Is it found that the doping causes a considerable increase in chemical stability of phases with respect to carbon dioxide.  相似文献   

3.
Hydrated alkaline-earth metal tungstates Ba4Ca2 + x W2 ? x O12 ? 2x with perovskite structure were studied by the thermogravimetry, 1H NMR, IR, and Raman spectroscopy methods. Electrical conductivity and transfer numbers were measured with varying T, \(p_{O_2 } \) and \(p_{H_2 O} \). The solid solutions are capable of reversibly intercalating water and can exhibit high-temperature proton transport. The localization of protons on oxygen results in the appearance of energetically nonequivalent OH groups; a small fraction of protons are present in the form of H2O and H3O+.  相似文献   

4.
Perovskite phases Ba3In2ZrO8 and Ba4In2Zr2O11 with the nominal concentration of structural oxygen vacancies 1/9 and 1/12, respectively, were synthesized by solid-phase and solution methods. X-ray diffraction showed cubic symmetry of both phases with the unit cell parameter a = 0.4193(2) and 0.4204(3) nm, respectively. The absence of superstructural lines resulted in the conclusion on statistical arrangement of oxygen vacancies. Thermogravimetry and mass spectrometry proved that both phases can reversibly absorb water from gas phase (pH2O = 2 × 10−2 atm) with observed correlation between the concentration of oxygen vacancies and amount of absorbed water. The total water amount was up to 0.9 mol per formula unit or, if recalculated for perovskite unit ABO3, 0.3 and 0.23 mol H2O, respectively. The temperature curves of coductivity in the atmosphere with various partial water vapor pressures (pH2O = 3 × 10−5 and 2 × 10−2 atm) showed significantly higher conductivity and lower activation energy (0.52 eV) in humid atmosphere due to proton transfer. The proton conductivity is up to 5 × 10−4 Ohm−1 cm−1 at 300°C for Ba3In2ZrO8 specimen. IR spectrometry showed that protons in the structure exist primarily in OH-groups.  相似文献   

5.
It has been demonstrated that Co2V2O7 and InVO4 react with each other forming a new compound of the Co2InV3O11 formula, when their molar ratio is equal to 1:1, or among CoCO3, In2O3 and V2O5, mixed at a molar ratio of 4:1:3. This compound melts incongruently at the temperature of 960±5°C, depositing crystals of InVO4. It crystallizes in the triclinic system and the unit cell parameters amount to: a=0.6524(6) nm, b=0.6885(5) nm, c=1.0290(4) nm, α=96.5°, β=104.1°, γ=100.9°, Z=2. The phase equilibria being established in the Co2V2O7–InVO4 system over the whole components concentration range up to the solidus line were described.  相似文献   

6.
Summary Specific heats on the single crystals of Sr2Nb2O7, Sr2Ta2O7 and (Sr1-xBax)2Nb2O7 were measured in a wide temperature range of 2-600 K. Heat anomalies of a λ-type were observed at the incommensurate phase transition of TINC (=495 K) on Sr2Nb2O7 and at the super-lattice phase transition of TSL (=443 K) on Sr2Ta2O7; the transition enthalpies and the transition entropies were estimated. Furthermore, a small heat anomaly was observed at the low temperature ferroelectric phase transition of TLOW (=95 K) on Sr2Nb2O7. The transition temperature TLOW decreases with increasing Ba content x and it vanishes for samples of x>2%.  相似文献   

7.
Strontium barium niobate crystals with congruent melting composition Sr0.61Ba0.39Nb2O6 (SBN-61), both nominally pure and doped with Cr3+ и Ni3+ ions, have been investigated by neutron diffraction. Different strontium and barium contents as well as their different distribution over the Sr1, of Sr2 and Ba2 crystallographic sites of SBN-61 structure, caused by introduction of dopants, have been revealed. Coordination polyhedra of cations have been established based on the analysis of cation–anion internuclear distances together with the calculation of bond-valence sums for cations, which are equal to their formal charge. It was found that the Nb1 and Nb2 atoms are located in distorted octahedra with quadfurcated (the Nb1O6 polyhedron) or bifurcated (the Nb2O6 polyhedron) vertices, and the Sr1 atoms are located in a cuboctahedron with bifurcated vertices in the base plane. Different polyhedra have been revealed for the Sr2 and Ba2 atoms: Sr2 atoms are coordinated by 15 oxygen atoms to form a highly distorted five-capped pentagonal prism, whereas Ba2 atoms are located in a highly distorted three-capped trigonal prism with a coordination number 9. Comparison of interatomic and internuclear distances, determined by X-ray and neutron diffraction analyses, respectively, allowed to reveal a highly pronounced shift of electron density in Nb1 and Sr2 polyhedra, responsible for the covalent bond and properties of crystals. Location of Cr3+ и Ni3+ dopant ions in the SBN-61 structure as well as their formal charges has been discussed.  相似文献   

8.
The results of studies of solid solutions with the overall composition of Bi4V2 ? x Ge x O11 ? δ and Bi4Ge3 ? x V x O12 + δ are presented. The process of phase formation are studied during the synthesis of solid solution using the ceramic method and through liquid precursors. Crystallochemical parameters of the obtained compounds are determined. The size distribution of the particles is studied. Conductivity of annealed of polycrystalline samples as a function of temperature and composition is studied using the impedance spectroscopy method. The shape of impedance complex plane plots of the samples obtained in different ways is studied and analyzed.  相似文献   

9.
Magnesium and zinc ferrites have been prepared by the polymeric precursor method. The organic material decomposition was studied by thermogravimetry (TG) and differential thermal analysis (DTA). The variation of crystalline phases and particle morphology with calcination temperature were investigated using X-ray diffraction (XRD) and scanning electronic microscopy (SEM), respectively. The colors of the ferrites were evaluated using colorimetry. Magnesium ferrite crystallizes above 800°C, presenting a yellow- orange color with a reflectance peak at the 600–650 nm range, while zinc ferrite crystallizes at 600°C, with a reflectance peak between 650–700 nm, corresponding to the red-brick color.  相似文献   

10.
Thermodynamic properties of melts of the CaB2O4-CaSiO3 and Ca2B2O5-CaSiO3 systems were determined by the method of high-temperature mass-spectrometry. The melts of these systems are characterized by negative deviations from the ideal behavior at 1800 K.  相似文献   

11.
Density, viscosity, and surface tension of KOH-H2O2-H2O solutions used to synthesize potassium superoxide in sprayer apparatus were studied with various relative amounts of the components in the temperature range 0–30°C. Analytical dependences of the above-mentioned quantities on temperature and solvent (water) content of the system were found.  相似文献   

12.
The phase composition has been studied and an equilibrium phase diagram has been designed for the Al2O3-Li2O-R2O5 (R = Ta or Nb) systems in the subsolidus region up to 1000°C and 85 mol % Li2O. New phases with the composition Li1+x Al1?x O2?x , where x = 0–0.67, have been found.  相似文献   

13.
Phase formation processes in the systems Ln2O3-SrO-Fe2O3 (Ln = La, Nd) in air in the temperature range 1200–1500°C were studied. The synthesis of the complex ferrites La2SrFe2O7 and Nb2SrFe2O7 involves the formation of the intermediate compounds LnFeO3 and LnSrFeO4 and occurs by the same mechanism as the synthesis of the corresponding aluminates, but much faster.  相似文献   

14.
Phase equilibria in the Ca3(VO4)2-K3VO4-NdVO4 system have been studied. An extensive calcium orthovanadate-based solid solution was found to form with the boundary compositions as follows: Ca3(VO4)2-Ca9Nd(VO4)7-Ca9.33K2.33(VO4)7-Ca7.88K2.63Nd0.87(VO4)7. The unit cell parameters of the whit-lockite vanadates synthesized increase as the potassium and neodymium contents increase. Phase transitions from the low-temperature β phase to the β′ centrosymmetrical structure in Ca9.33 − 5z K2.33 + z Nd3z (VO4)7 vanadates have been studied dilatometrically. The increase in the β ai β′ transition temperature caused by potassium is interpreted as arising from the filling in of vacant cation positions M(4) and M(6).  相似文献   

15.
16.
Solid solutions based on BaSm2S4 ? x mol % BaS (Sm2S3) are obtained. Oxide intermediates were homogenized using chemical and mechanical mixing methods. The solid solution region is determined. Complex conductivity is studied and conductivity activation energy is calculated for samples with different history. Electrolytic properties of phases based on barium thiosamarate are studied. Vacancy mechanism of defect formation is suggested.  相似文献   

17.
Ca3Co4O9 powder was prepared by a polyacrylamide gel route in this paper. The effect of the processing on microstructure and thermoelectric properties of Ca3Co4O9 ceramics via spark plasma sintering were investigated. Electrical measurement shows that the Seebeck coefficient and conductivity are 170 μV/K and 128 S/cm, respectively, at 700 °C, yielding a power factor value of 3.70 × 10−4 W m−1 K−2 at 700 °C, which is larger than that of Ca3Co4O9 ceramics via solid-state reaction processing. The polyacrylamide gel processing is a fast, cheap, reproducible and easily scaled up chemical route to improve the thermoelectric properties of Ca3Co4O9 ceramics by preparing the homogeneous and pure Ca3Co4O9 phase.  相似文献   

18.
This paper presents the results of our experimental studies of quantitative redistribution and isotope fractionation of oxygen during the crystal growth of cubic solid solutions based on ZrO2. The single crystals were grown by directional crystallization of a melt in a cold container. As stabilizing oxides, we used Y2O3, Gd2O3, and Yb2O3 in concentrations of 8–40 mol %. The results showed that the oxygen isotopic growth effects changed depending on the type and content of the stabilizer in the crystals of ZrO2-R2O3 solid solutions.  相似文献   

19.
The protonation and deprotonation of the Nb2O5 surface has been followed in order to understand the reactions of surface of this catalyst. The simultaneous potentiometric and conductometric titrations had been carried by using 50 mL of water suspension of Nb2O5 40 g L−1. The oxide was entirely deprotonated when adding 0.4 mL NaOH 1 mol L−1, and later titrated with 0.1 mol L−1. The titration had supplied K 1 and K 2 and the obtained values were 3.24 × 10−3 and 4.17 × 10−8, respectively. The zero point charge was pHpcz = 4.94. The thermodynamic studies were carried out by using 50 mL of a 40 g/L Nb2O5 aqueous suspension with the pH adjusted to pHPZC value. The suspension was titrated with 0.5 mol/L of HNO3 or NaOH for protonation or deprotonation studies, respectively, in an isoperibol calorimeter CSC ISC-4300. Thus, the obtained thermodynamic values of the protonation and deprotonation of Nb2O5 were Δdp G = −37.60 kJ/mol, Δdp H = −23.72 kJ/mol and ΔdpS = 47 J/(mol K).  相似文献   

20.
Fe3O4 nanorods and Fe2O3 nanowires have been synthesized through a simple thermal oxide reaction of Fe with C2H2O4 solution at 200–600°C for 1 h in the air. The morphology and structure of Fe3O4 nanorods and Fe2O3 nanowires were detected with powder X-ray diffraction, scanning electron microscopy and transmission electron microscopy. The influence of temperature on the morphology development was experimentally investigated. The results show that the polycrystals Fe3O4 nanorods with cubic structure and the average diameter of 0.5–0.8 μm grow after reaction at 200–500°C for 1 h in the air. When the temperature was 600°C, the samples completely became Fe2O3 nanowires with hexagonal structure. It was found that C2H2O4 molecules had a significant effect on the formation of Fe3O4 nanorods. A possible mechanism was also proposed to account for the growth of these Fe3O4 nanorods. Supported by the Fund of Weinan Teacher’s University (Grant No. 08YKZ008), the National Natural Science Foundation of China (Grant No. 20573072) and the Doctoral Fund of Ministry of Education of China (Grant No. 20060718010)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号