首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The electronic structure and magnetic properties of Fe-doped SiC nanotubes are investigated by using the first-principles method based on density functional theory(DFT) in the local spin density approximation(LSDA).The calculation results indicate that the SiC nanotube of Fe substitution for C exhibits antiferromagnetism while ferromagnetism features prominently when Fe substitutes Si.This is a kind of half-metal magnetic material.The formation energy calculation results show that the formation energy of ferromagnetic structure is 3.2 eV lower than that of antiferromagnetic structure.Fe atoms are more likely to replace Si atoms.Spin-orbit coupling induces electron spin polarization in the ground state.Also,the doping Fe atoms make relaxation towards the outside of the tube to some extent and larger geometric distortion occurs when Fe substitutes C,but the whole geometric structure of SiC nanotubes is not damaged due to the doping.It is revealed in the calculation of energy band structure and density of states that more dispersed distribution of energy levels is produced near the Fermi level.For Fe substitution for Si,obviously there are spin-split and intense p-d hybrid effects by Si 3p electron spins and Fe 3d electron spins localized at the exchanging interactions between magnetic transitional metal(TM) impurities.Spin electronic density results indicate that system magnetic moments are mainly generated by the unpaired 3d electrons of Fe atoms.All these results show that the transition metal doping SiC nanotube could be a potential route to fabricating the promising magnetic materials.  相似文献   

2.
Spin interactions are studied between conduction band electrons in GaAs heterostructures and local moments, specifically the spins of constituent lattice nuclei and of partially filled electronic shells of impurity atoms. Nuclear spin polarizations are addressed through the contact hyperfine interaction resulting in the development of a method for high-field optically detected nuclear magnetic resonance sensitive to 108 nuclei. This interaction is then used to generate nuclear spin polarization profiles within a single parabolic quantum well; the position of these nanometer-scale sheets of polarized nuclei can be shifted along the growth direction using an externally applied electric field. In order to directly investigate ion spin dynamics, doped GaMnAs quantum wells are fabricated in the regime of very low Mn concentrations. Measurements of coherent electron spin dynamics show an antiferromagnetic exchange between s-like conduction band electrons and electrons localized in the d-shell of the Mn impurities, which varies as a function of well width.  相似文献   

3.
The Heisenberg ferromagnet with an antiferromagnetic impurity and arbitrary spin is considered. The method is suggested for constructing the ground state of such a system, the method using the Jacobi matrix technique. As an example, there has been investigated the ferromagnet with a simple cubic lattice and the matrix spin S = 12, and the impurity spin S′ = 1. The energy and wave function of the ground state are found as dependent on the system parameters.  相似文献   

4.
《Nuclear Physics B》1999,546(3):691-710
From the open boundary t-J model an impurity model is constructed in which magnetic impurities of arbitrary spins are coupled to the edges of the strongly correlated electron system. The boundary R matrices are given explicitly. The interaction parameters between magnetic impurities and electrons are related to the potentials of the impurities to preserve the integrability of the system. The Hamiltonian of the impurity model is diagonalized exactly. The integral equations of the ground state are derived and the ground state properties are discussed in detail. We discuss also the string solutions of the Bethe ansatz equations, which describe the bound states of the charges and spins. By minimizing the thermodynamic potential we get the thermodynamic Bethe ansatz equations. The finite size correction of the free energy contributed by the magnetic impurities is obtained explicitly. The properties of the system at some special limits are discussed and the boundary bound states are obtained.  相似文献   

5.
The possibility of indirect exchange coupling mediated by Landau electrons bound to magnetic impurities in 2DES is studied here. The importance of the resonance scattering of the Landau electrons with the impurities is emphasized due to its spin selectivity which results in strong spin polarization of the localized Landau states. The bound Landau states act as mediators of the superexchange interaction resulting in an antiferromagnetic interaction between the nuclear spins of the impurities. The coupling constant, between these nuclear spins, J, is presented for the case of a weak scattering limit and found to depend strongly on the ratio of the impurity separation over the magnetic length. Possible applications of these results may include a long-range mechanism for coupling between two nuclear spins to be used as a qubits interaction with a spacing distance of the order of the magnetic length.  相似文献   

6.
张华林  孙琳  韩佳凝 《物理学报》2017,66(24):246101-246101
利用基于密度泛函理论的第一性原理方法,研究了三角形BN片掺杂的锯齿型石墨烯纳米带(ZGNR)的磁电子学特性.研究表明:当处于无磁态时,不同位置掺杂的ZGNR都为金属;当处于铁磁态时,随着杂质位置由纳米带的一边移向另一边时,依次可以实现自旋金属-自旋半金属-自旋半导体的变化过程,且只要不在纳米带的边缘掺杂,掺杂的ZGNR就为自旋半金属;当处于反铁磁态时,在中间区域掺杂的ZGNR都为自旋金属,而在两边缘掺杂的ZGNR没有反铁磁态.掺杂ZGNR的结构稳定,在中间区域掺杂时反铁磁态是基态,而在边缘掺杂时铁磁态为基态.研究结果对于发展基于石墨烯的纳米电子器件具有重要意义.  相似文献   

7.
We investigate the scanning tunneling spectroscopy (STS) of a two-orbital Anderson impurity adsorbed on a metallic surface by using the numerical renormalization group (NRG) method. The density of state of magnetic impurity and the local conduction electron are calculated. We obtain the Fano resonance line shape in the STM conductance at zero temperature. For the impurity atom with antiferromagnetic inter-orbital exchange interaction and a spin singlet ground state, we show that a dip in the STM spectra around zero bias voltage regime and side peaks of spin excitation can be observed. The spin excitation energy is proportional to the exchange interaction strength. As the exchange interaction is ferromagnetic, the underscreened Kondo effect dominates the low energy properties of this system, and it gives rise to drastically different STM spectra as compared with the spin singlet case.  相似文献   

8.
一维自旋-轨道模型中的畴状轨道液体态   总被引:3,自引:0,他引:3       下载免费PDF全文
张士勇 《物理学报》2003,52(9):2290-2292
研究了一个一维可解自旋-轨道模型.在大自旋极限下,自旋自由度可以近似用经典自旋来描 述.在没有外磁场情形,系统的基态是伊辛自旋反铁磁背景下的轨道液体态.其低能元激发是 类似于spinon的轨道量子.而在有外磁场情形,系统会出现磁通点阵相.同时,磁通将系统分 割成不连通的轨道液体. 关键词: 自旋轨道系统 畴状轨道液体  相似文献   

9.
The ground states of the ultracold spin-1 atoms trapped in a deep one-dimensional double-well optical superlattice in a weak magnetic field are obtained. It is shown that the ground-state diagrams of the reduced double- well model are remarkably different for the antiferromagnetic and ferromagnetic condensates. The transition between the singlet state and nematic state is observed for the antiferromagnetic interaction atoms, which can be realized by modulating the tunneling parameter or the quadratic Zeeman energy. An experiment to distinguish the different spin states is suggested.  相似文献   

10.
The problem of states of an electron system interacting with impurities that have a spin of 1/2 is considered. It is shown that in the calculation of the energy of the system, the electron spin-flip processes and the formation of electron–hole–impurity flip spin (hole against the background of electrons with another spin projection) play the major role. Such complexes are accumulated in the system (a sort of Bose condensate of complexes is formed); this reduces the energy of the system, which is a linear function of the initial interaction of an electron with the impurity spin (in contrast, for example, to the result obtained in perturbation theory). The hole-type excitation and the spin excitation have a gap in the spectrum. Small parameters of the problem are the interaction of electrons with impurity spins and the number of impurities. The electron–electron interaction is not taken into account. Impurities are assumed to be distributed at random, and calculations are performed using the known averaging over the positions of impurities.  相似文献   

11.
The magnetic coupling between single Co atoms adsorbed on a copper surface is determined by probing the Kondo resonance using low-temperature scanning tunneling spectroscopy. The Kondo resonance, which is due to magnetic correlation effects between the spin of a magnetic adatom and the conduction electrons of the substrate, is modified in a characteristic way by the coupling of the neighboring adatom spins. Increasing the interatomic distance of a Cobalt dimer from 2.56 to 8.1 A we follow the oscillatory transition from ferromagnetic to antiferromagnetic coupling. Adding a third atom to the antiferromagnetically coupled dimer results in the formation of a collective correlated state.  相似文献   

12.
The photoelectron spectrum of the dichromium oxide cluster anion, Cr2O-, and the analysis by the density-functional theory revealed that the spins of the two Cr atoms in Cr2O- are ferromagnetically coupled, and that its total spin magnetic moment is as large as 9 mu(B). This ferromagnetic spin coupling is induced by oxidation; the mixing of Cr 3d with O 2p orbitals plays an important role in a spin coupling between the localized electrons at the two Cr sites bridged by the O atom. The present finding is in marked contrast to the pure chromium dimer, which is known to be antiferromagnetic due to the strong sextuple Cr-Cr bond.  相似文献   

13.
We show how nanostructuring of a metallic gate of a field-effect transistor (FET) converts the electron channel of an FET to an artificial Haldane chain with a gap in the energy spectrum. A specially designed gate structure creates a chain of triple quantum dot molecules. The electrons localized in the molecules realize a spin-half Heisenberg chain with spin–spin interactions alternating between ferromagnetic and antiferromagnetic. The quantum state of an FET is a semiconductor implementation of an integer spin-one antiferromagnetic Heisenberg chain with a unique correlated ground state and a finite energy gap, originally conjectured by Haldane.  相似文献   

14.
We study the competition between different possible ground states of the double-exchange model with strong ferromagnetic exchange interaction between itinerant electrons and local spins. Both for classical and quantum treatment of the local spins the homogeneous canted state is shown to be unstable against a phase separation. The conditions for the phase separation into the mixture of the antiferromagnetic and ferromagnetic/canted states are given. We also discuss another possible realization of the phase-separated state: ferromagnetic polarons embedded into an antiferromagnetic surrounding. The general picture of a percolated state, which emerges from these considerations, is discussed and compared with results of recent experiments on doped manganaties. Received 17 March 1999  相似文献   

15.
利用基于密度泛函理论的第一性原理方法,研究了掺杂铁、钴和镍原子的锯齿型磷烯纳米带(ZPNR)的磁电子学特性.研究表明,掺杂和未掺杂ZPNR的结构都是稳定的.当处于非磁态时,未掺杂和掺杂钴原子的ZPNR为半导体,而掺杂铁或者镍原子的ZPNR为金属.自旋极化计算表明,未掺杂和掺杂钴原子的ZPNR无磁性,而掺杂铁或者镍原子的ZPNR有磁性,但只能表现出铁磁性.处于铁磁态时,掺杂铁原子的ZPNR为磁性半导体,而掺杂镍原子的ZPNR为磁性半金属.掺杂铁或者镍原子的ZPNR的磁性主要由杂质原子贡献,产生磁性的原因则是在ZPNR中存在未配对电子.掺杂位置对ZPNR的磁电子学特性有一定的影响.该研究对于发展基于磷烯纳米带的纳米电子器件具有重要意义.  相似文献   

16.
Electron spin resonance (ESR) was used to study the ground state properties of two kinds of spin (S) one Heisenberg antiferromagnetic chain systems, namely a uniform chain system (HAUC), which is well known as the Haldane system, and a bond alternating chain system (HABA). To investigate and compare the features of the ground state, two nickel chain compounds doped with non-magnetic Zn2+ impurities were studied. The HAUC was modelled with Ni(1,3-pn)2(μ-NO2)(ClO4)(1,3-pn = 1,3-propanediamine), abbreviated as NINO, while the HABA was modelled with Ni(333-tet)(μ-NO2)(ClO4) (333-tet = bis-(3-aminopropyl)-1,3-propanediamine), abbreviated as NTENP. Both systems have a singlet ground state with an excitation gap. The ground state of NINO approximates well to the valence bond solid state, thus producing S = 1/2 spins at the sites neighbouring the impurities. The angular dependence of the ESR signals of NINO:Zn is explained by the anisotropy of the g tensor for spin 1/2. On the other hand, the ground state of NTENP is expected to be in the singlet dimer phase based on the ratio of alternating bond strengths. In this case, it is expected that the S = 1 spins will appear at the sites neighbouring the impurities without forming the singlet dimer. From ESR studies of NTENP:Zn was observed the triplet state (S = 1), induced by the impurity doping, which is consistent with the above picture.  相似文献   

17.
The electronic structure of boron nitride nanotubes (8, 0) with intercalated alkali metal atoms and alkaline-earth metal ions is studied. It is shown by calculation that the spin density is localized on individual atoms or ions. The antiferromagnetic state of a linear chain of atoms and ions turns out to be energetically more favorable. Exchange interaction between spins is fairly weak. Such systems are suggested to be used as two-qubit cells for a quantum computer.  相似文献   

18.
Magnetic properties of anisotropic crystals with localized spins S = 1 are investigated; for these crystals, the Hamiltonian is derived in the Heisenberg-Dirac-van Vleck form, which includes biquadratic contributions apart from bilinear terms. The ground-state energy of the antiferromagnetic chain of spins S = 1 is calculated in the model of nearest neighbors, and the interaction constant is renormalized using the renorm group method in the case of coarsening of the system. The temperature criterion for the formation of long-range order in the system is obtained. The excitations of this chain in the linear approximation have a dispersion relation differing from that for antiferromagnets with spin S = 1/2 and are separated by an energy gap from the ground state. Allowance for nonlinear contribution leads to the formation of a solitary wave in the form of a dark-bright soliton.  相似文献   

19.
The electronic structure and the magnetic properties of the non-pure organic ferromagnetic compound MnCu(pbaOH)(H2O)3 with pbaOH=2-hydroxy-1, 3-propylenebis (oxamato) are studied by using the density-functional theory with local-spin-density approximation. The density of states, total energy, and the spin magnetic moment are calculated. The calculations reveal that the compound MnCu(pbaOH)(H2O)3 has a stable metal-ferromagnetic ground state, and the spin magnetic moment per molecule is 2.208 μa, and the spin magnetic moment is mainly from Mn ionand Cu ion. An antiferromagnetic order is expected and the antiferromagnetic exchange interaction of d-electrons of Cu and Mn passes through the antiferromagnetic interaction between the adjacent O, 0, and N atoms along the path linking the atoms Cu and Mn.  相似文献   

20.
We report carrier spin dynamics in highly uniform self-assembled InAs quantum dots and the observation of antiferromagnetic coupling between semiconductor quantum dots. The spin relaxation times in the ground state and the first excited state were measured to be 1.0 and 0.6 ns, respectively, without the disturbance of inhomogeneous broadening. The measured spin relaxation time decreases rapidly from 1.1 ns at 10 K to 200 ps at 130 K. This large change in the spin relaxation time is well-explained in terms of the mechanism of acoustic phonon emission. In coupled quantum dots, the formation of antiferromagnetic coupling is directly observed. Electron spins are found to flip at 80 ps after photoexcitation via the interdot exchange interaction. The antiferromagnetic coupling exists at temperatures lower than 50–80 K. A model calculation based on the Heitler–London approximation supports the finding that the antiferromagnetic coupling is observable at low temperature. These carrier spin features in quantum dots are suitable for the future quantum computation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号