首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
A series of new alkoxy-amino-bis(phenols) (H2L 1-6) has been synthesized by Mannich condensations of substituted phenols, formaldehyde, and amino ethers or diamines. The coordination properties of these dianionic ligands towards yttrium, lanthanum, and neodymium have been studied. The resulting Group 3 metal complexes have been used as initiators for the ring-opening polymerization of rac-lactide to provide poly(lactic acid)s (PLAs). The polymerizations are living, as evidenced by the narrow polydispersities of the isolated polymers, together with the linear natures of number average molecular weight versus conversion plots and monomer-to-catalyst ratios. Complex [Y(L6){N(SiHMe2)2}(THF)] (17) polymerized rac-lactide to heterotactic PLA (Pr = 0.90 at 20 degrees C) and meso-lactide to syndiotactic PLA (Pr = 0.75 at 20 degrees C). The in situ formation of [Y(L6)(OiPr)(THF)] (18) from 17 and 2-propanol resulted in narrower molecular weight distributions (PDI = 1.06). With complex 18, highly heterotactic PLAs with narrow molecular weight distributions were obtained with high activities and productivities at room temperature. The natures of the ligand substituents were shown to have a significant influence on the degree of control of the polymerizations, and in particular on the tacticity of the polymer.  相似文献   

2.
A one‐pot method for the preparation of a new family of PLA materials is reported that combines heterotactic (soft) and isotactic stereoblocks (hard). The ring‐opening polymerization of rac‐lactide with a salan–rare‐earth‐metal–alkyl complex in the presence of excess triethanolamine was performed in an immortal mode to give three‐armed heterotactic poly(lactide) (soft) with excellent end‐hydroxy fidelity. The in situ addition of a salen–aluminum–alkyl precursor to the above polymerization system under any monomer‐conversion conditions activated the “dormant” hydroxy‐ended PLA chains to propagate through the incorporation of the remaining rac‐lactide monomer, but with isospecific selectivity (hard). The resultant PLA had a three‐armed architecture with controlled molecular weight and extremely narrow molecular‐weight distribution (PDI<1.08). More strikingly, each side‐arm simultaneously possessed highly heterotactic (soft) and highly isotactic (hard) segments and the ratio of these two stereoregular sequences could be swiftly adjusted by tuning the addition time of the salen–aluminum–alkyl precursor to the polymerization system. Therefore, star‐shaped hard–soft stereoblock poly(lactide)s with various Pm values and crystallinity were achieved in a single reactor for the first time. This strategy should be applicable to the synthesis of a series of new types of stereoblock polyesters by using an immortal‐polymerization process and a proper choice of specific, selective metal‐based catalysts.  相似文献   

3.
Ring‐opening polymerization of rac‐ and meso‐lactide initiated by indium bis(phenolate) isopropoxides {1,4‐dithiabutanediylbis(4,6‐di‐tert‐butylphenolate)}(isopropoxy)indium ( 1 ) and {1,4‐dithiabutanediylbis(4,6‐di(2‐phenyl‐2‐propyl)phenolate)}(isopropoxy)indium ( 2 ) is found to follow first‐order kinetics for monomer conversion. Activation parameters ΔH? and ΔS? suggest an ordered transition state. Initiators 1 and 2 polymerize meso‐lactide faster than rac‐lactide. In general, compound 2 with the more bulky cumyl ortho‐substituents in the phenolate moiety shows higher polymerization activity than 1 with tert‐butyl substituents. meso‐Lactide is polymerized to syndiotactic poly(meso‐lactides) in THF, while polymerization of rac‐lactide in THF gives atactic poly(rac‐lactides) with solvent‐dependent preferences for heterotactic (THF) or isotactic (CH2Cl2) sequences. Indium bis(phenolate) compound rac‐(1,2‐cyclohexanedithio‐2,2′‐bis{4,6‐di(2‐phenyl‐2‐propyl)phenolato}(isopropoxy)indium ( 3 ) polymerizes meso‐lactide to give syndiotactic poly(meso‐lactide) with narrow molecular weight distributions and rac‐lactide in THF to give heterotactically enriched poly(rac‐lactides). © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013 , 51, 4983–4991  相似文献   

4.
We describe alkoxo‐aluminum catalysts of chiral bipyrrolidine‐based salan ligands that follow the dual‐stereocontrol mechanism wherein a given combination of stereogeneities at the metal site and the proximal center of the last inserted lactidyl (“match”) is active towards lactide having a proximal stereogenic center of the opposite configuration, while the diastereomeric combination of stereogeneities (“mismatch”) is inactive towards any lactide. Polymerization of rac‐LA by the enantiomerically pure catalysts was sluggish and gave stereoirregular poly(lactic acid) (PLA) because selective insertion to a match diastereomer gives a mismatch diastereomer. The racemic catalysts showed higher activity and led to highly heterotactic PLA following polymeryl exchange between two mismatched catalyst enantiomers. A succession of match diastereomers in selective meso‐LA insertions led to syndiotactic PLAs reaching a syndiotacticity degree of α=0.96. This polymer featured a Tm of 153 °C matching the highest reported value, and the highest crystallinity (ΔHm=56 J g?1) ever reported for syndiotactic PLA.  相似文献   

5.
Di‐stereoblock polylactides (di‐sb‐PLA: PLLA‐b‐PDLA) having high molecular weight (Mn > 100 kDa) were successfully synthesized by two‐step ring‐opening polymerization (ROP) of L ‐ and D ‐lactides using tin(2‐ethylhexanoate) as a catalyst. By optimizing the polymerization conditions, the block sequences were well regulated at non‐equivalent feed ratios of PLLA and PDLA. This synthetic method consisted of three stages: (1) polymerization of either L ‐ or D ‐lactide to obtain a PLLA or PDLA prepolymer with a molecular weight less than 50 kDa, (2) purification of the obtained prepolymer to remove residual lactide, and (3) polymerization of the enantiomeric lactide in the presence of the purified prepolymer. Their 13C and 31P NMR spectra of the resultant di‐sb‐PLAs strongly supported their di‐stereo block structure. These di‐sb‐PLAs, having weight‐average molecular weights higher than 150 kDa, were fabricated into polymer films by solution casting and showed exclusive stereocomplexation. The thermomechanical analysis of the films revealed that their heat deformation temperature was limited probably because of their low crystallinity owing to the non‐equivalent PLLA/PDLA ratio. The blend systems of the di‐sb‐PLAs having complementary stereo‐sequences (the one with a long PLLA block and the other with long PDLA block) were also prepared and characterized to enhance the sc crystallinity. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 794–801, 2010  相似文献   

6.
Two sodium/potassium tetradentate aminobisphenolate ion‐paired complexes were synthesized and structurally characterized. These ion‐paired complexes are efficient catalysts for the ring‐opening polymerization of rac‐lactide (rac‐LA) in the presence of 5 equivalents BnOH as an initiator and the side reaction of epimerization can be suppressed well at low temperatures. The polymerizations are controllable, affording polylactides with desirable molecular weights and narrow molecular weight distributions; the highest molecular weight can reach 50.1 kg mol?1 in this system, and a best isoselectivity of Pm=0.82 was achieved. Such polymerizations have rarely been reported for isoselective sodium/potassium complexes without crown ether as an auxiliary ligand. The solid structures suggest that BnOH can be activated by an interaction with the anion of sodium/potassium complex via a hydrogen bond and that the monomer is activated by coordination to sodium/potassium ion.  相似文献   

7.
Random copolymerizations of L ‐lactide with (R)‐, (S)‐, or rac‐1‐methyltrimethylene carbonate with bis(pentamethylcyclopentadienyl) samarium‐methyl tetrahydrofuranate [(C5Me5)2SmMe(THF)] as a novel initiator provided high molecular weight polymers with low polydispersities. Biodegradation of the resulting polymers with tricine and {N‐[tris(hydroxymethyl)methyl]‐2‐aminoethane sulfonic acid (TES) buffers as well as activated sludge showed only a small weight loss, whereas the polymer with proteinase K revealed high biodegradability independent of the optical activity of 1‐methyltrimethylene carbonate. © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 39: 3916–3927, 2001  相似文献   

8.
A novel hydroxy‐, methoxy‐, and phenoxy‐bridge “Mitsubishi emblem” tetranuclear aluminum complex ( 1 ) is synthesized from an unsymmetric amine‐pyridine‐bis(phenol) N2O2‐ligand (H2L1) and a symmetric amine‐tris(phenol) NO3‐ligand (H2L2). Two same configuration chiral nitrogen atoms are formed in the tetranuclear Al complex upon coordination of the unsymmetric tertiary amine ligand to central Al. Complex 1 initiates controlled ring‐opening polymerization (ROP) of rac‐lactide and afford polylactide (PLA) with narrow molecular weight distributions (Mw/Mn = 1.05–1.19). The analysis of 1H NMR spectra of the oligomer indicates that the methoxy group is the initiating group and the ring‐opening polymerization of lactide follows a coordination‐insertion mechanism. The Homonuclear decoupled 1H NMR spectroscopy suggests the isotactic‐rich chains is preferentially formed in PLA. The study on kinetics of the ROP of lactide reveals the homopropagation rate is higher than the cross‐propagation rate, which is in agreement with the observed isotactic selectivity in the ROP of rac‐lactide. The stereochemistry of the polymerization was also supported by activation parameters. The introduction of unsymmetric ligand H2L1 has an effect on stereoslectivity of polymerization. This result may be of interest for the design of multinuclear metal complex catalysts containing functionalized ligands. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55, 2084–2091  相似文献   

9.
Hetero‐bimetallic Fe(II) alkoxide/aryloxides were evaluated as initiators for the ring‐opening polymerization of rac‐lactide. [(THF)NaFe(OtBu)3]2 ( 1 ) and [(THF)4Na2Fe(2,6‐diisopropylphenolate)4] ( 2 ) (THF = tetrahydrofuran) both polymerized lactide efficiently at room temperature, with complex 1 affording better control over the molecular weight parameters of the resultant polymer. At conversions below 70%, a linear increase in molecular weight with conversion was observed, indicative of a well‐controlled polymerization process. Complex 2 is the first example of a dianionic Fe(II) alkoxide and has been structurally characterized to reveal a distorted square planar FeO4 array in which both Na counterions bridge two aryloxide ligands and are further complexed by two THF ligands. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 3798–3803, 2003  相似文献   

10.
A series of aluminum dimethyl complexes 1 – 6 bearing N‐[2‐(pyrrolidinyl)benzyl]anilido ligands were synthesized and well characterized. The molecular structure of complex 1 determined by an X‐ray diffraction study indicates the bidentate chelating mode of the pyrrolidinyl‐anilido ligand. In the absence of a coinitiator, these complexes exhibited excellent control toward the polymerizations of ε‐caprolactone and rac‐lactide, affording polyesters with quite narrow molecular weight distributions (Mw/Mn = 1.04–1.26). The end group analysis of ε?CL oligomer via 1H NMR and ESI‐TOF MS methods gave strong support to the hypothesis that the polymerization catalyzed by these aluminum complexes proceeds via a coordination‐insertion mechanism involving a unique Al? N (amido) bond initiation. Via 1H NMR scale oligomerization studies, it is suggested that the insertion of the first lactide monomer into Al? N bond of the complex is much easier than the insertion of lactide monomer into the newly formed Al? O (lactate) bond and might also be easier than the insertion of the first ε?CL monomer into Al? N bond. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 3096–3106  相似文献   

11.
Aluminum‐based salen and salan complexes mediate the ring‐opening polymerization (ROP) of rac‐β‐butyrolactone (β‐BL), rac‐lactide, and ε‐caprolactone. Al‐salen and Al‐salan complexes exhibit excellent control over the ROP of rac‐β‐butyrolactone, yielding atactic poly(3‐hydroxybutyrate) (PHB) with narrow PDIs of <1.15 for Al‐salen and <1.05 for Al‐salan. Kinetic studies reveal pseudo‐first‐order polymerization kinetics and a linear relationship between molecular weight and percent conversion. These complexes also mediate the immortal ROP of rac‐β‐BL and rac‐lactide, through the addition of excess benzyl alcohol of up to 50 mol eq., with excellent control observed. A novel methyl/adamantyl‐substituted Al‐salen system further improves control over the ROP of rac‐lactide and rac‐β‐BL, yielding atactic PHB and highly isotactic poly(lactic acid) (Pm = 0.88). Control over the copolymerization of rac‐lactide and rac‐β‐BL was also achieved, yielding poly(lactic acid)‐co‐poly(3‐hydroxybutyrate) with narrow PDIs of <1.10. 1H NMR spectra of the copolymers indicate a strong bias for the insertion of rac‐lactide over rac‐β‐BL. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2013  相似文献   

12.
High molecular weight poly(L ‐lactide)s (PLLAs) and poly(D ‐lactide)s (PDLAs) were synthesized in toluene at 70 °C by ring‐opening polymerization of optically pure L ‐lactide and D ‐lactide, using tin(II) 2‐ethylhexanoate (SnOct2) and 2‐(2‐methoxyethoxy)ethanol as initiator and coinitiator, respectively. Under these conditions, polarimetry as well as 13C NMR spectroscopy indicated that the synthesized poly(lactide)s (PLAs) are more than 99% isotactic. The molecular weight was successfully controlled by adjusting the monomer‐to‐initiator molar ratio. Gel permeation chromatography and MALDI‐TOF mass spectrometry analyses showed that the polydispersity index of the PLAs is below 1.1. Moreover, MALDI‐TOF spectra showed two different chain distributions, one characterized by an even number of lactic acid repeat units and the other by an odd number of lactic acid repeat units. The second distribution, indicative of the presence of intermolecular transesterification reactions, appears at the very beginning of the polymerization and its intensity increases with the polymerization time. Finally, a reversible reaction kinetic model was used to determine the monomer equilibrium concentration ([M]eq = 1.4 ± 0.5%) and the propagation rate constant (kp = 14.4 ± 0.5 L mol?1 h?1) of the polymerization. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 1944–1955, 2007  相似文献   

13.
A series of magnesium benzylalkoxide complexes, [LnMg(μ‐OBn)]2 ( 1 – 14 ) supported by NNO‐tridentate pyrazolonate ligands with various electron withdrawing‐donating subsituents have been synthesized and characterized. X‐ray crystal structural studies revealed that Complexes 1 – 3 , 5 , 7 , 9 , and 10 are dinuclear bridging through benzylalkoxy oxygen atoms with penta‐coordinated metal centers. All of these complexes acted as efficient initiators for the ring‐opening polymerization of L‐lactide and rac‐lactide. Based on kinetic studies, the activity of these metal complexes is significantly influenced by the electronic effect of the ancillary ligands with the electron‐donating substituents at the phenyl rings enhancing the polymerization rate. In addition, the “living” and “immortal” character of 6 has paved a way to synthesize as much as 40‐fold polymer chains of polylactides with a very narrow polydispersity index in the presence of a small amount of initiator. Among all of magnesium complexes, Complex 6 exhibits the highest stereoselectivity toward ring‐opening polymerization of rac‐lactide with Pr up to 88% in THF at 0 °C. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2013  相似文献   

14.
Phosphido‐diphosphine Group 3 metal complexes 1–4 [(o‐C6H4PR2)2P‐M(CH2SiMe3)2; R = Ph, 1 : M = Y, 2 : M = Sc; R = iPr, 3 : M = Y, 4 : M = Sc] are very efficient catalysts for the ring‐opening polymerization (ROP) of cyclic esters such as ε‐caprolactone (ε‐CL), L ‐lactide, and δ‐valerolactone under mild polymerization conditions. In the ROP of ε‐CL, complexes 1–4 promote quantitative conversion of high amount of monomer (up to 3000 equiv) with very high turnover frequencies (TOF) (~4 × 104 molCL/molI h) showing a catalytic activity among the highest reported in the literature. The immortal and living ROP of ε‐CL and L ‐lactide is feasible by combining complexes 1–4 with 5 equiv of 2‐propanol. Polymers with controlled molecular parameters (Mn, end groups) and low polydispersities (Mw/Mn = 1.05–1.09) are formed as a result of fast alkoxide/alcohol exchange. In the ROP of δ‐valerolactone, complexes 1–4 showed the same activity observed for lactide (L ‐ and D ,L ‐lactide) producing high molecular weight polymers with narrow distribution of molar masses. Complexes 1–4 also promote the ROP of rac‐β butyrolactone affording atactic low molecular weight poly(hydroxybutyrate) bearing unsaturated end groups probably generated by elimination reactions. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

15.
Core‐shell structured nanoparticles of poly(ethylene glycol) (PEG)/polypeptide/poly(D ,L ‐lactide) (PLA) copolymers were prepared and their properties were investigated. The copolymers had a poly(L ‐serine) or poly(L ‐phenylalanine) block as a linker between a hydrophilic PEG and a hydrophobic PLA unit. They formed core‐shell structured nanoparticles, where the polypeptide block resided at the interface between a hydrophilic PEG shell and a hydrophobic PLA core. In the synthesis, poly(ethylene glycol)‐b‐poly(L ‐serine) (PEG‐PSER) was prepared by ring opening polymerization of N‐carboxyanhydride of O‐(tert‐butyl)‐L ‐serine and subsequent removal of tert‐butyl groups. Poly(ethylene glycol)‐b‐poly(L ‐phenylalanine) (PEG‐PPA) was obtained by ring opening polymerization of N‐carboxyanhydride of L ‐phenylalanine. Methoxy‐poly(ethylene glycol)‐amine with a MW of 5000 was used as an initiator for both polymerizations. The polymerization of D ,L ‐lactide by initiation with PEG‐PSER and PEG‐PPA produced a comb‐like copolymer, poly(ethylene glycol)‐b‐[poly(L ‐serine)‐g‐poly(D ,L ‐lactide)] (PEG‐PSER‐PLA) and a linear copolymer, poly(ethylene glycol)‐b‐poly(L ‐phenylalanine)‐b‐poly(D ,L ‐lactide) (PEG‐PPA‐PLA), respectively. The nanoparticles obtained from PEG‐PPA‐PLA showed a negative zeta potential value of ?16.6 mV, while those of PEG‐PSER‐PLA exhibited a positive value of about 19.3 mV. In pH 7.0 phosphate buffer solution at 36 °C, the nanoparticles of PEG/polypeptide/PLA copolymers showed much better stability than those of a linear PEG‐PLA copolymer having a comparable molecular weight. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

16.
A series of zinc silylamido complexes bearing non‐symmetric β ‐diketiminate ligands were synthesized and structurally characterized. Ring‐opening polymerization (ROP) of rac ‐lactide catalyzed by these zinc complexes afforded heterotactic polylactides at room temperature (P r = 0.79 ~ 0.83 in THF). The steric and electronic characteristics of the ancillary ligands showed significant influence on the polymerization performance of the corresponding zinc complexes. All these zinc complexes also showed moderate activities toward the polymerization of ε ‐caprolactone at ambient temperature in toluene, producing polycaprolactones (PCLs) with high molecular weights and moderate polydispersities. PCL‐b ‐PLLA copolymers could be obtained via three different copolymerization strategies (one‐pot polymerization, and sequential addition of the two monomers in either order) by adopting complex 6 as the initiator through the adjustment of reaction temperatures. The diblock nature of the copolymers was confirmed by 13C NMR spectroscopy and DSC analysis.  相似文献   

17.
A series of 1,ω‐dithiaalkanediyl‐bridged bis(phenols) of the general type [OSSO]H2 with variable steric properties and various bridges were prepared. The stoichiometric reaction of the bis(phenols) 1,3‐dithiapropanediyl‐2,2′‐bis(4,6‐di‐tert‐butylphenol), 1,3‐dithiapropanediyl‐2,2′‐bis[4,6‐di(2‐phenyl‐2‐propyl)phenol], rac‐2,3‐trans‐propanediyl‐1,4‐dithiabutanediyl‐2,2′‐bis[4,6‐di(2‐phenyl‐2‐propyl)phenol], rac‐2,3‐trans‐butanediyl‐1,4‐dithiabutane diyl‐2,2′‐bis[4,6‐di(2‐phenyl‐2‐propyl)phenol], rac‐2,3‐trans‐hexanediyl‐1,4‐dithiabutanediyl‐2,2′‐bis[4,6‐di(2‐phenyl‐2‐propyl)phenol], 1,3‐dithiapropanediyl‐2,2′‐bis[6‐(1‐methylcyclohexyl)‐4‐methylphenol] (C1, R=1‐methylcyclohexyl), and 1,4‐dithiabutanediyl‐2,2′‐bis[6‐(1‐methylcyclohexyl)‐4‐methylphenol] with rare‐earth metal silylamido precursors [Ln{N(SiHMe2)2}3(thf)x] (Ln=Sc, x=1 or Ln=Y, x=2; thf=tetrahydrofuran) afforded the corresponding scandium and yttrium bis(phenolate) silylamido complexes [Ln(OSSO){N(SiHMe2)2}(thf)] in moderate to good yields. The monomeric nature of these complexes was shown by an X‐ray diffraction study of one of the yttrium complexes. The complexes efficiently initiated the ring‐opening polymerization of rac‐ and meso‐lactide to give heterotactic‐biased poly(rac‐lactides) and highly syndiotactic poly(meso‐lactides). Variation of the ligand backbone and the steric properties of the ortho substituents affected the level of tacticity in the polylactides.  相似文献   

18.
Ethylene glycol (EG) initiated, hydroxyl‐telechelic poly(L ‐lactide) (PLLA) was employed as a macroinitiator in the presence of a stannous octoate catalyst in the ring‐opening polymerization of 5‐methyl‐5‐benzyloxycarbonyl‐1,3‐dioxan‐2‐one (MBC) with the goal of creating A–B–A‐type block copolymers having polycarbonate outer blocks and a polyester center block. Because of transesterification reactions involving the PLLA block, multiblock copolymers of the A–(B–A)n–B–A type were actually obtained, where A is poly(5‐methyl‐5‐benzyloxycarbonyl‐1,3‐dioxan‐2‐one), B is PLLA, and n is greater than 0. 1H and 13C NMR spectroscopy of the product copolymers yielded evidence of the multiblock structure and provided the lactide sequence length. For a PLLA macroinitiator with a number‐average molecular weight of 2500 g/mol, the product block copolymer had an n value of 0.8 and an average lactide sequence length (consecutive C6H8O4 units uninterrupted by either an EG or MBC unit) of 6.1. For a PLLA macroinitiator with a number‐average molecular weight of 14,400 g/mol, n was 18, and the average lactide sequence length was 5.0. Additional evidence of the block copolymer architecture was revealed through the retention of PLLA crystallinity as measured by differential scanning calorimetry and wide‐angle X‐ray diffraction. Multiblock copolymers with PLLA crystallinity could be achieved only with isolated PLLA macroinitiators; sequential addition of MBC to high‐conversion L ‐lactide polymerizations resulted in excessive randomization, presumably because of residual L ‐lactide monomer. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 6817–6835, 2006  相似文献   

19.
New polynuclear zinc complexes containing tridentate Schiff base ligands were successfully synthesized and fully characterized. The solid‐state structure of the complexes was determined using single crystal X‐ray diffraction. The complexes display a tetranuclear cubane‐like core structure [Zn4O4] and sowed good catalytic activity towards the ring‐opening polymerization (ROP ) of rac‐lactide (rac‐LA ) and ε‐caprolactone (ε‐CL ) under solvent‐free conditions. The polylactic acid (PLA ) obtained from rac‐LA showed isotactic enrichment, as proved by homonuclear decoupled 1H‐NMR analysis. These complexes also showed good activity and superior control towards the ROP of rac‐LA and ε‐CL in the presence of benzyl alcohol as a co‐initiator. Furthermore, kinetic studies demonstrated that the ROP of rac‐LA and ε‐CL has a first order dependence on both monomer (rac‐LA and ε‐CL ) and catalyst concentration.  相似文献   

20.
The thermal properties, crystallization, and morphology of amphiphilic poly(D ‐lactide)‐b‐poly(N,N‐dimethylamino‐2‐ethyl methacrylate) (PDLA‐b‐PDMAEMA) and poly (L ‐lactide)‐b‐poly(N,N‐dimethylamino‐2‐ethyl methacrylate) (PLLA‐b‐PDMAEMA) copolymers were studied and compared to those of the corresponding poly(lactide) homopolymers. Additionally, stereocomplexation of these copolymers was studied. The crystallization kinetics of the PLA blocks was retarded by the presence of the PDMAEMA block. The studied copolymers were found to be miscible in the melt and the glassy state. The Avrami theory was able to predict the entire crystallization range of the PLA isothermal overall crystallization. The melting points of PLDA/PLLA and PLA/PLA‐b‐PDMAEMA stereocomplexes were higher than those formed by copolymer mixtures. This indicates that the PDMAEMA block is influencing the stability of the stereocomplex structures. For the low molecular weight samples, the stereocomplexes particles exhibited a conventional disk‐shape structure and, for high molecular weight samples, the particles displayed unusual star‐like shape morphology. © 2011 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 49: 1397–1409, 2011  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号