首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
粉煤灰在环境材料中利用的研究进展   总被引:1,自引:0,他引:1  
能源转化的燃煤过程产生大量粉煤灰,其资源化利用不但减少环境污染而且提高经济效益,已成为人们研究的热点。本文综述了粉煤灰作为吸附剂在去除烟气NOx、SOx、汞、有机芳烃和污水中重金属离子、磷和氟离子以及有机化合物中的应用。粉煤灰中未燃尽的炭在吸附过程中起重要作用。粉煤灰合成沸石控制污染物是粉煤灰在环境材料方面利用的发展方向。基于"以废治污"科学理念,提出了利用粉煤灰制备DeNOx添加剂降低流化催化裂化(FCC)再生过程NOx排放新工艺,开辟粉煤灰资源化利用新途径,同时为FCC再生过程NOx污染物控制技术提供理论支持。  相似文献   

2.
采用王水分解试样-原子荧光光谱法(AFS)测定粉煤灰中的砷、汞,方法回收率分别为98.5%~102.0%、85.0%~105.0%,相对偏差分别为1.9%~4.8%、0.6%~2.4%.方法具有快速、简便、灵敏等优点,对探讨粉煤灰在农业生态环境方面的综合利用颇有价值.  相似文献   

3.
粉煤灰物化性质对单质汞吸附性能的影响   总被引:1,自引:0,他引:1  
在固定床实验台上考察了三种不同来源粉煤灰对单质汞的吸附性能,采用X射线荧光光谱仪、X射线光电子能谱仪、激光粒度分析仪、扫描电子显微镜等对不同粉煤灰的物化性质进行了表征,并探讨了物化性质对汞吸附性能的影响。结果表明,粉煤灰对汞的吸附包括物理吸附和化学吸附;粉煤灰中未燃尽碳是影响粉煤灰汞吸附性能的重要因素之一,其中,表面C元素与Ti、Si等元素(M)相互作用形成的"C-M"化学键促进了单质汞的氧化,同时粉煤灰中含有的无机化合物Fe2O3等也对单质汞的氧化有促进作用;增大比表面积和减小孔径,及适中的颗粒粒径均有利于提高粉煤灰单质汞吸附性能。  相似文献   

4.
采用王水分解试样 -氢化物发生原子荧光光谱法 (HG -AFS)测定粉煤灰中有害微量元素砷。方法回收率为 98 5 %~ 1 0 2 3 % ,相对标准偏差为 1 9%~ 4 8% ,该法具有快速、简便、灵敏、可测范围宽等优点 ,对探讨粉煤灰在农业土壤改良中的应用具有十分重要的意义  相似文献   

5.
粉煤灰/硅橡胶复合材料的性能研究   总被引:2,自引:0,他引:2  
以粉煤灰为填料,采用Si-69、钛酸酯和硬脂酸三种偶联剂对其进行表面处理,采用红外光谱仪和扫描电镜分析了改性前后粉煤灰的表面结构和形貌,而后将粉煤灰添加到硅橡胶中,比较粉煤灰改性前后复合材料的力学性能和阻燃性能。实验结果表明:红外光谱证实三种偶联剂改变了粉煤灰的表面结构,SEM观察到改性后粉煤灰的比表面积得到了提高;改性粉煤灰/硅橡胶复合材料的力学性能和阻燃性能比未改性的粉煤灰/硅橡胶复合材料得到了较大的提高。当添加量为1%的硬脂酸改性粉煤灰/硅橡胶复合材料的力学性能和阻燃性能最佳。  相似文献   

6.
粉煤灰与几种酸固相反应特性的表面分析   总被引:1,自引:0,他引:1  
用扫描电镜.能量色散谱研究了粉煤灰与酸的固相反应过程中表面形貌和化学组成变化特性。室温下粉煤灰分别与HCI、HNO3、H2SO4、HCIO4固相反应后,表面产生直径20—200nm的结晶颗粒或晶柱。反应生成的水溶物结晶体的扫描电镜图像分别呈手指状、龟背形、蛛蛛状、蝙蝠态,分别为氯化铝铁混晶、硝酸铝铁混晶、硫酸铝铁混晶和高氯酸铝铁混晶。粉煤灰是硅、铝、铁等元素的氧化物聚集体,铁铝等氧化物主要分布在颗粒表面,氧化硅主要分布在颗粒内层。用少量酸进行固相反应这些氧化物聚集体可相互剥离,用H2SO4处理粉煤灰优先将铁铝氧化物转化成可溶性硫酸盐。  相似文献   

7.
超细粉煤灰吸附亚甲基蓝的机理研究   总被引:2,自引:0,他引:2  
以西安西郊热电厂粉煤灰(XFA),西安灞桥热电厂粉煤灰(BFA)和陕西渭河电厂粉煤灰(WFA)为原料,球磨后经旋风分级再用布袋收集逸出物分别得到超细粉煤灰XUFA、BUFA和WUFA。研究了超细粉煤灰对亚甲基蓝的吸附动力学、热力学以及pH值对吸附的影响。结果表明,超细粉煤灰对亚甲基蓝的吸附性能明显好于原粉煤灰。超细粉煤灰对亚甲基蓝的吸附性能按顺序为WUFA>XUFA>BUFA。粉煤灰颗粒粒度、比表面积和活性组分(SiO2 Al2O3)含量是影响粉煤灰吸附性能的主要因素。WUFA对亚甲基蓝的吸附符合Langmuir吸附等温式,而XUFA和BUFA对亚甲基蓝的吸附符合Freundlich吸附等温式。超细粉煤灰对亚甲基蓝的吸附均符合二级吸附动力学模型,吸附过程由颗粒内扩散过程控制。当溶液pH由2增加到8时,超细粉煤灰吸附量增加,后随pH值增加,吸附量略有下降。  相似文献   

8.
基于应用化学专业教师的科研方向与学校的矿业能源办学特色,设计综合性的“粉煤灰合成有序介孔硅及其应用”应用化学专业实验,包括粉煤灰的预处理、有序介孔硅的合成、样品的表征分析及应用探索。通过该特色鲜明的专业实验的开设,不但可以加强学生对学校特色和专业方向的认知,而且能够提高学生的动手操作和创新实践能力,为学生后续开展科学研究奠定坚实的基础。  相似文献   

9.
近年来,随着国内燃煤发电量的持续增长,作为燃煤电厂最主要的固体废弃物,粉煤灰的排放量也随着燃煤消耗的增长而急剧增加,引发了严峻的社会和环境问题。粉煤灰中的铝和硅元素含量很高,具有极高的提取价值。本文先对粉煤灰进行酸处理,除去粉煤灰中碱金属元素,提高硅铝比,之后采用水热合成法直接合成了高结晶度的ZSM-5沸石分子筛,此外还在水热合成时加入一定比例正硅酸乙酯(TEOS)后制备高硅铝比ZSM-5沸石分子筛,对二者在结构、结晶度和储氢性能方面进行了研究。结果表明,加TEOS后的ZSM-5的储氢性能比没有加TEOS的储氢量高,储氢量从0.584%增加到0.846%。  相似文献   

10.
自清洁和空气净化能力是绿色建筑发展的两个重要方向,它们不仅使建筑体向功能多样化方向发展,而且为新材料的应用提供了平台.因与大量城市环境污染物(氮氧化物,挥发性有机化合物等)直接接触,具有空气净化能力的光催化水泥基材料引起了人们广泛关注.在过去几十年里,通过使用直接喷洒到浆体表层或与水泥原材料预先共混的方法,国内外已相继将TiO2光催化材料应用到了一些实际工程中.但TiO2光催化剂在水泥基材料中高效和稳定发挥其性能仍需解决两个关键问题:(1)它在水泥基体中分散性和效能耐久性问题;(2)其量子效率和对可见光利用率问题.对于后者,目前的材料制备与改性方法,如金属、非金属改性等已能获得量子效率和可见光活性都较好的TiO2类光催化材料.研究表明,水泥水化产物(氢氧化钙、C-S-H凝胶等)的包覆、后期碳化所致气体和光线扩散孔隙的降低是导致TiO2光催化剂在水泥基材料中耐久性和利用率差的可能原因.我们前期报道了一种将纳米TiO2催化剂预先负载到水泥基材料用的多孔粗集料表面,然后将负载型催化剂整体引入到水泥基体中的催化剂应用方法,发现该法能有效提升TiO2催化剂在水泥基材料中的催化效率和耐久性.微米级活性粉煤灰具有良好的水泥基材料兼容性,通过采用简单的碱激发手段,可形成孔径小于50 nm的介孔和微孔类沸石材料,从而影响光催化材料的催化性能.因此,基于粉煤灰的特征,为了进一步提高TiO2催化剂在水泥基材料中的应用效率和催化耐久性,我们采用碱激发法获得了大比表面和介孔结构的沸石类粉煤灰材料,将其用于负载纳米TiO2催化剂,然后引入到水泥基体中,制备了沸石类粉煤灰/TiO2光催化水泥基材料,同时研究了光还原Ag修饰对沸石类粉煤灰/TiO2光催化水泥基材料的催化性能影响及其催化耐久性.结果表明,具有分级孔结构的沸石粉煤灰载体可有效提升纳米TiO2光催化剂在水泥基体中的暴露度,同时还增加了其对气相苯(200×10–6初始浓度)的光催化去除能力.最佳Ag修饰量(1.4×10–4 wt%)沸石类粉煤灰/TiO2光催化水泥样品对气相苯的光催化伪一级反应速率常数达到9.91×10–3 min?1,分别是沸石类粉煤灰/TiO2光催化水泥样品和纯TiO2光催化水泥样品效能的3和10倍.光催化稳定性结果发现,在3次催化循环后,样品对气相苯的光催化去除率仍能达到96.3%(180 min).考虑到水泥基材料碳化是影响光催化剂使用耐久性的一个关键因素,我们还评估了沸石类粉煤灰/TiO2光催化水泥样品28 d加速碳化后的光催化性能.结果表明,经过加速碳化后,样品对气相苯光催化去除率只降低了11%,相比于同条件下纯TiO2水泥样品性能,其催化耐久性显著提高,表明沸石类粉煤灰载体可有效提升TiO2在水泥基体中的催化耐久性.这可能是由于其高孔隙特性可降低周围水泥水化产物的形成量,如高钙/硅比C-S-H凝胶及氢氧化钙结晶,进而降低了这些水化产物碳化所带来的影响.  相似文献   

11.
Fly ash is combustion residue from burning of pulverised coal in electric utility generating stations. The annual production of fly ash in India is around 100 MTPA and is responsible for several environmental hazards, which is quite well documented. There are stringent norms for its land disposal and hence utilisation of fly ash is imperative. Fly ash has more than 85% of SiO2 and Al2O3 content and is therefore a tailor made raw material for production of zeolite. An innovative process has been developed for synthesis of zeolites using fly ash as a substitute for conventional raw materials viz. sodium silicate and aluminate. The process consists of three major steps viz. fusion of caustic soda and fly ash for optimal extraction of silicate and aluminate, aging step which provides time for formation of nuclei and hydrothermal crystallization resulting in activation of nuclei into well defined crystals. Low temperature operation, simplicity of process and optimal recycling of unused reactants and process water are special features of these processes. Zeolites have high internal and external surface areas and also exhibit high exchange capacities, which makes them versatile materials for targeting wide range of pollutants, ranging from cationic to anionic and hydrophilic to hydrophobic molecules. The major uses of zeolites are in adsorption, ion exchange and as catalysts. The use of zeolites in environmental remediation is restricted due to procurement problem and prohibitive cost, which can be overcome by using low cost fly ash based zeolites (FAZs). The synthesis of FAZ-A and FAZ-Y and their modifications either by transition metal incorporation or by surfactant treatment for various environmental applications in air, water and soil remediation are addressed in this review.  相似文献   

12.
Decomposition of diethyl phthalate (DEP) exposed to a coal fly ash has been investigated in water by measuring UV-VIS spectra and GC-MS. Alkaline constituents eluted from the fly ash in the liquid phase gradually hydrolyzed DEP to produce monoethyl phthalate and/or phthalic acid. These products were adsorbed on the fly ash and decarboxylated into ethyl benzoate and benzoic acid, respectively, followed by decomposition into benzenes and/or the other compounds of lower molecular weight. The fly ash acts as not only an adsorbent but also a decomposer.  相似文献   

13.
在实验室小型流化床实验装置上,利用添加氧化钙研究了原煤中钙硫比变化对燃煤过程中砷在飞灰中的富集规律和飞灰中砷的浸出特性的影响。实验结果表明,增加钙硫比能有效促进砷在飞灰中富集,降低砷的排放。砷与氧化钙的反应受制于钙的硫化反应控制。飞灰中砷的浸出与滤液pH值关系显著,碱性飞灰导致滤液pH值增大,能有效抑制飞灰中砷的浸出。碱性飞灰中砷的浸出历程为飞灰中砷在短时间内快速溶出;随着滤液pH值增大,溶出的砷与钙发生二次反应形成钙砷化合物沉淀,降低滤液中砷浓度。  相似文献   

14.
Most of the dyes are organic compounds, with different degree of polarization and different groups with various steric effects, making their complete biodegradation slow or even impossible. Adsorption on fly ash and fly ash based substrates represents a possible alternative for simultaneous removal of dyes and heavy metals form wastewaters resulted in the textile industry. Adsorption (under visible light) and adsorption and photodegradation (under UV irradiation) studies were done on Methylene blue solutions and on their mixtures with heavy metals (copper and cadmium), in systems using fly ash as single substrate, or mixed with a wide band gap semiconductor (TiO2). The titanium oxides and hematite content in fly ash proved to be responsible for photodegradation processes even in the absence of the TiO2 powder, confirming that modified fly ash is a viable candidate in developing up scalable processes for advanced wastewater treatment. The kinetic and thermodynamic studies allow to calculate the parameters and to describe the complex mechanisms, involving competitive adsorption.  相似文献   

15.
This paper presents the results of investigation of properties of fly ash from four major thermal power plants in Serbia. Chemical, mineralogical and thermal characterization of fly ash has been performed in order to determine the possibility of its use as the raw material for the construction material industry, primarily the cement industry. Thermal properties of the raw mixtures for Portland cement clinker production based on fly ash were also investigated. The conclusion was reached that the use of fly ash as a component of the raw mixture components for the production of cement clinker not only enables substitution of natural raw materials, but could also have a positive influence on reduction of the sintering temperature of Portland cement clinker.  相似文献   

16.
Abstract

Fly ash and soil mixtures with a range of fly ash content from 1 to 100% were used to study adsorption and desorption of four organophosphorus insecticides, ethyl parathion, methyl parathion, fenitrothion and fenthion, in batch experiments. The object of the study was to develop a treatment process using fly ash as sorbent material to isolate/immobilize organic contaminants from aqueous solutions. The adsorption isotherms fit the Freundlich equation x/m=KdC1/n. The Kd values increase with the increase of the fly ash content. The isotherms seem to fit the S type, in mixtures of soil with a fly ash content from 0 to 10%, which implies that adsorption becomes easier as the concentration in the liquid phase increases. In mixtures of soil with a fly ash content from 25 to 50% the isotherms become L type and correspond to a decrease of site availability as the solution concentration increases. Finally in mixtures of soil with a fly ash content over 50%, C type adsorption was observed which correspond to a constant partition of the insecticides between the bulk solution and the adsorbent. Mass balance estimations show that the mean percent amounts of insecticides for a range of concentration 0.5–15 mg/l, removed by adsorption in the soil sample are 81.56 % for ethyl parathion, 48.97 % for methyl parathion, 67.06 % for fenitrothion and 86.65 % for fenthion. The adsorption increases as the fly ash content increased and reach the 100% in the “pure” fly ash. The adsorbed amounts of insecticides in mixtures of soils with >50% fly ash content, are up to 99%. In contrast, the amounts of desorption in water decrease as the fly ash content increase.

The results of this research demonstrate that the fly ash shows a significant capacity for adsorption of organophosphorus compounds from aqueous solution and can be used for pesticide removal process.  相似文献   

17.
Mercury is one of the most hazardous trace elements produced by coal-fired power plants. Mercury in the flue gas is predominately present as three different species: particulate mercury (Hgp), oxidized mercury (Hg2+), and elemental mercury (Hg0). Of these three, elemental mercury is the most difficult to remove from flue gas streams due to its low reactivity and low solubility in water. With increasing production costs associated with activated carbon materials, and increasing restrictions on mercury emissions, the development of an alternative low cost absorbent to capture elemental mercury by using fly ash modified with bromide compounds is highly desirable. Modified fly ash is usually injected into the flue gas stream after the air pre-heater system of a coal-fired power plant to oxidize and subsequently absorb elemental mercury. Research on the quantity and method of modifying the bromide amended fly ash is needed to obtain the most efficient mercury capture rate. This study utilized the impregnation method to prepare three different fly ashes with hydrogen bromide (HBr). Adsorption capabilities of the modified fly ashes were then examined using a fixed bed reactor. Thermogravimetric (TG) analysis was employed to quantify the amount of hydrogen bromide in the modified fly ash, which was subsequently compared to the water extraction method using ion chromatography. TG-MS was also utilized to evaluate the release of HBr from the modified fly ash and elucidate the mechanism for mercury capture.  相似文献   

18.
The use of ordinary Portland cement (OPC) in the construction industry is inevitable. The huge production of OPC and its use in infrastructural development pose an environmental impact. Greenhouse gas emitted increases the global temperature and it is an alarming sign to everybody on the planet. Concrete is the most consuming material which is produced by using OPC and it is proven that OPC contributes a lot to CO2 emission. Hence in this study attempt is made to produce concrete by using environment-friendly material like fly ash along with alkaline activators, which is termed Geo polymer concrete. The by-product fly ash is widely available worldwide. It is a by-product of thermal power plants. The use of fly ash in concrete produces less expensive and more cost-effective concrete than concrete made up using OPC. Due to its high silicate and alumina content, fly ash reacts with an alkaline solution to create an aluminosilicate gel that binds the aggregate and results in high-quality concrete. Fly ash is finer than cement, it occupies the pores of cement after hydration. This would result in denser concrete which gives higher strength. In comparison to ordinary concrete, fly ash-based geopolymer concrete offers better resistance to aggressive environments and high temperatures. In the present study, an alkaline activator of molarity 8 is used to prepare geopolymer concrete. The test specimens are cast and cured for 28 days. Test results indicate that an alkaline liquid fly-ash ratio (0.4) produces higher mechanical properties. Hence, geopolymer concrete produced in this study is found to be cost-effective and environment friendly.  相似文献   

19.
Coal bioprocessing research at the institute of gas technology   总被引:1,自引:0,他引:1  
Coal bioprocessing research at the Institute of Gas Technology (IGT) has included solubilization, gasification, desulfurization, denitrogenation, production of specialty chemicals, and the remediation of organic and inorganic wastes associated with coal utilization. Currently, research is focused on desulfurization and remediation. Desulfurization research concerns the development of processes to remove organic sulfur or to convert a portion of pyritic sulfur to sulfuric acid rapidly, thereby serving as a pretreatment to aid the thermochemical conversion of coal to coke and liquid products. The removal of as much as 91% organic sulfur from coal has been achieved, and biodesulfurization of coal has been confirmed by seven analytical techniques performed in six different laboratories. Recent studies have involved the use of molecular genetics to develop strains of bacteria with higher levels of desulfurization activity, and the development of methods for the preparation, storage, and utilization of biodesulfurization catalysts. Remediation studies include the development ofin situ and on-site technologies to treat soil contaminated with coal tar, the leaching of metals from fly ash, and the treatment of waste water resulting from fly ash leaching or from acidic mine drainage (AMD). IGT currently has two projects in EPA’s SITE program concerned with the remediation of coal tar-contaminated soil, and other related technologies are being developed. Efficient laboratory-scale processes for the removal of metals from fly ash and from soil so that the solids pass EPA’s TCLP test, and the subsequent treatment of the leachates or AMD to meet all regulatory requirements have been developed. Data obtained in these projects are presented in particular, and a general discussion of the application of biotechnology to coal is offered.  相似文献   

20.
Fly ash has been regarded as hazardous because of its high adsorption of toxic organic and/or inorganic pollutants. Fly ash is also known to have broad distributions of different chemical and physical properties, such as size and density. In this study, fly ash emitted from a solid waste incinerator was pre-fractionated into six sub-populations by use of gravitational SPLITT fractionation (GSF). The GSF fractions were then analyzed by sedimentation field-flow fractionation (SdFFF) and ICP–AES. SdFFF analysis showed the fly ash has a broad size distribution ranging from a few nanometers up to about 50 µm. SdFFF results were confirmed by electron microscopy. Inductively coupled plasma–atomic emission spectroscopy (ICP–AES) analysis of the GSF fractions showed the fly-ash particles contain a variety of inorganic elements including Ca, Si, Mg, Fe, and Pb. The most abundant in fly ash was Ca, followed by Si then Mg. No correlations were found between trace element concentration and particle size.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号