首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
Novel dendrimers G2PC and G4PC consisting of a p‐pentaphenylene core ( PC ) appended in the para position with two second‐generation ( G2 ) or two fourth‐generation ( G4 ) sulfonimide branches and two n‐octyl chains, as well as a model compound of the pentaphenylene core ( G0PC ), are prepared. The photophysical properties (absorption, emission, and excitation spectra; fluorescence decay lifetime; and fluorescence anisotropy spectra) of the three compounds are investigated under different experimental conditions (dichloromethane solution and solid state at 293 K, dichloromethane/methanol rigid matrix at 77 K). In the absorption spectra contributions from both the branches and the core can be clearly identified. The fluorescence spectra show only the characteristic fluorescence of the pentaphenylene unit with λmax around 410 nm in fluid solution and 420 nm in the solid state. In solution the fluorescence quantum yields are 0.78, 0.76, and 0.72 for G0PC , G2PC , and G4PC , respectively, and the fluorescence lifetime is about 0.7 ns in all cases. Energy transfer from the chromophoric groups of the dendrimer branches to the core does not occur. The three compounds show the same, high steady‐state anisotropy value (0.35) in dilute rigid‐matrix solution at 77 K. In dichloromethane at 293 K, the increasing anisotropy values along the series G0PC (0.17), G2PC (0.27), and G4PC (0.32), with increasing molecular volume of the three compounds, show that depolarization takes place by molecular rotation. In the solid state the anisotropy is very low (0.015, 0.017, and 0.035 for G0PC , G2PC , and G4PC , respectively), probably because of fast depolarization via energy migration.  相似文献   

2.
We have investigated the fluorescence properties of dendrimers (Gn is the dendrimer generation number) containing four different luminophores, namely terphenyl (T), dansyl (D), stilbenyl (S), and eosin (E). In the case of T, the dendrimers contain a single p-terphenyl fluorescent unit as a core with appended sulfonimide branches of different size and n-octyl chains. In the cases of D and S, multiple fluorescent units are appended in the periphery of poly(propylene amine) dendritic structures. In the case of E, the investigated luminophore is noncovalently linked to the dendritic scaffold, but is encapsulated in cavities of a low luminescent dendrimer. Depending on the photophysical properties of the fluorescent units and the structures of the dendrimers, different mechanisms of fluorescence depolarization have been observed: (i) global rotation for GnT dendrimers; (ii) global rotation and local motions of the dansyl units at the periphery of GnD dendrimers; (iii) energy migration among stylbenyl units in G2S; and (iv) restricted motion when E is encapsulated inside a dendrimer, coupled to energy migration if the dendrimer hosts more than one eosin molecule.  相似文献   

3.
We have synthesized a novel class of dendrimers, consisting of a polysulfurated pyrene core with appended poly(thiophenylene) dendrons (PyG0, PyG1, and PyG2, see Scheme 1), which exhibit remarkable photophysical and redox properties. In dichloromethane or cyclohexane solution they show a strong, dendron-localized absorption band with a maximum at around 260 nm and a band in the visible region with a maximum at 435 nm, which can be assigned to the pyrene core strongly perturbed by the four sulfur substituents. The dendrimers exhibit a strong (Phi=0.6), short-lived (tau=2.5 ns) core-localized fluorescence band with maximum at approximately 460 nm in cyclohexane solution at 293 K. A strong fluorescence is also observed in dichloromethane solution at 293 K, in dichloromethane/chloroform rigid matrix at 77 K, and in the solid state (powder) at room temperature. The dendrimers undergo reversible chemical and electrochemical one-electron oxidation with formation of a strongly colored deep blue radical cation. A second, reversible one-electron oxidation is observed at more positive potential values. The photophysical and redox properties of the three dendrimers are finely tuned by the length of their branches. The strong blue fluorescence and the yellow to deep blue color change upon reversible one-electron oxidation can be exploited for optoelectronic devices.  相似文献   

4.
The synthesis of "designer" dendrimers and dendrons with sulfonimide units at every branching point is reported. The synthesis is based on a series of (regio)selective functionalization reactions of amines and sulfonamides allowing precise control of the dendrimers' shape, the number of branches in each generation, and their peripheral decoration with functional groups. In principle, structurally different branches can be incorporated at any position within the dendrimer structure at will. Structurally perfect symmetrical and two-faced "Janus"-type dendrimers, as well as dendrimers and dendrons with intended interstices were synthesized on a preparative scale and fully characterized. Oligosulfonimide dendrons of various generations bearing an aryl bromide functional group at their focal points were attached to a p-phenylene core with the aid of Suzuki cross-coupling reactions resulting in dendrimers with photoactive terphenyl cores. The structure and the high purity of all dendritic sulfonimides were confirmed by means of (1)H and (13)C NMR, electrospray ionization mass spectrometry (ESI-MS), and elemental analysis. The utility of MALDI-TOF mass spectrometry for the analytical characterization of these dendrimers was evaluated in comparison to electrospray ionization. Two model branched oligosulfonimides were characterized in the solid state by single-crystal X-ray analysis. Reaction selectivities and conformation of sulfonimide branching points were rationalized by DFT calculations.  相似文献   

5.
The efficient fluorescence resonance energy transfer (FRET) between amphiphilic dendrimers with oligo(p‐phenylenevinylene) core branches and oligo(ethylene oxide) termini have been observed in micelles. All dendrimers show the critical micelle concentration and lower critical solution temperature as well as fluorescent emission. Tailoring electronic structures of the conjugated amphiphiles for FRET have been conveniently achieved by varying the branch number and/or the conjugated core structure. The Stern‐Volmer constants (KSV) for FRET were found to be 4.51 × 10?5 and 8.78 × 10?5 M for Den 30–40 and Den 50–40, respectively. The effects external stimuli such as solvent and temperature on FRET have been also investigated. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2013  相似文献   

6.
A series of vinylene‐linked copolymers based on electron‐deficient benzobisthiazole and electron‐rich fluorene moieties were synthesized via Horner–Wadsworth–Emmons polymerization. Three different polymers P1 , P2 , and P3 , were prepared bearing octyl, 3,7‐dimethyloctyl, and 2‐(2‐ethoxy)ethoxyethyl side chains, respectively. The polymers all possessed moderate molecular weights, good solubility in aprotic organic solvents, and high fluorescence quantum efficiencies in dilute solutions. P2 , which bore branched 3,7‐dimethyloctyl side chains, exhibited better solubility than the other polymers, but also exhibited the lowest thermal decomposition temperature of all polymers. Overall, the impact of the side chains on the polymers optical properties in solution was negligible as all three polymers gave similar absorption and emission spectra in both solution and film. Guest‐host light‐emitting diodes using dilute blends of the polymers in a poly(N‐vinylcarbazole) host gave blue‐green emission with P2 exhibiting the highest luminous efficiency, 0.61 Cd/A at ~500 nm. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2013  相似文献   

7.
Luminescent and redox-active porphyrin-based dendrimers of first and second generation have been synthesized, and their absorption spectra, photophysical properties, and oxidation behavior have been investigated, together with those of the corresponding aldehyde carbazole precursors. All the dendrimers contain a porphyrin core and carbazole-based chromophores as branches. The structural formulas of the new species are represented in Figures 1 and 2, with the corresponding schematizations. The absorption spectra of the aldehyde carbazole precursors A1-A6 in dichloromethane exhibit intense transitions in the UV region, centered on the carbazole and benzaldehyde subunits. The lowest-energy absorption bands receive contribution from charge-transfer transitions. Compounds A1-A6 are luminescent at room temperature in fluid solution; such a luminescence is attributed to twisted intramolecular charge-transfer excited states. The luminescence at 77 K in a rigid matrix is blue-shifted with respect to room-temperature emission and is assigned to locally excited states. Absorption spectra of the porphyrin-cored dendrimers P1-P6 appear additive as they are constituted by visible bands due to porphyrin absorption and bands in the UV region due to transitions centered on the carbazole-based branches. Emission spectra of P1-P6 both at 77 K and at room temperature are typical of porphyrin species and independent of excitation wavelength, indicating that the light collected by the peripheral chromophores is quantitatively transferred to the core. All the compounds exhibit a rich oxidation behavior in 1,2-dichloroethane solution, with reversible processes centered on the different carbazole subunits. Interaction between the different carbazole centers depends on the size of the spacer interposed.  相似文献   

8.
Highly soluble dendritic branches with fullerene subunits at the periphery and a carboxylic acid function at the focal point have been prepared by a convergent approach. They have been attached to an oligophenylenevinylene (OPV) core bearing two alcohol functions to yield dendrimers with two, four or eight peripheral C60 groups. Their photophysical properties have been systematically investigated in solvents of increasing polarity; that is, toluene, dichloromethane, and benzonitrile. Ultrafast OPV-->C60 singlet energy transfer takes place for the whole series of dendrimers, whatever the solvent. Electron transfer from the fullerene singlet is thermodynamically allowed in CH2Cl2 and benzonitrile, but not in apolar toluene. For a given solvent, the extent of electron transfer, signaled by the quenching of the fullerene fluorescence, is not the same along the series, despite the fact that identical electron transfer partners are present. By increasing the dendrimer size, electron transfer is progressively more difficult due to isolation of the central OPV core by the dendritic branches, which hampers solvent induced stabilization of charge separated couples. Compact structures of the hydrophobic dendrimers are favored in solvents of higher polarity. These structural effects are also able to rationalize the unexpected trends in singlet oxygen sensitization yields.  相似文献   

9.
The photophysical processes have been investigated in first, second and third generation dendrimers with poly-(phenylenevinylene) branches and a ruthenium tris-bipyridine core, RuDn (n = 1–3). These dendrimers show very efficient forward singlet–singlet energy transfer from the branches to the ruthenium core upon UV irradiation, with efficiencies of 0.99 for RuD1 and 0.88 for RuD2 and RuD3 in CH2Cl2. The RuDn dendrimers show a bi-exponential emission decay in CH2Cl2, when excited with a 460 nm light with short lifetimes, however, the emission decay lifetimes become mono-exponential in 10% Triton X-100 aqueous solution (τ = 840 ns for RuD1, 890 ns for RuD2 and 1120 ns for RuD3).  相似文献   

10.
We have prepared and investigated two dendrimers based on a 1,3,5-trisubstituted benzenoid-type core, containing 9 and 21 viologen units in their branches, respectively, and terminated with tetraarylmethane derivatives. We have shown that, in dichloromethane solution, such highly charged cationic species give rise to strong host-guest complexes with the dianionic form of the red dye eosin. Upon complexation, the absorption spectrum of eosin becomes broader and is slightly displaced toward lower energies, whereas the strong fluorescence of eosin is completely quenched. Titration experiments based on fluorescence measurements have shown that each viologen unit in the dendrimers becomes associated with an eosin molecule, so that the number of positions ("seats") available for the guest molecules in the hosting dendrimer is clearly established, e.g., 21 for the larger of the two dendrimers. The host-guest interaction can be destroyed by addition of chloride ions, a procedure which permits eosin to escape from the dendrimer's interior in a controlled way and to regain its intense fluorescence. When chloride anions are precipitated out by addition of silver cations, eosin molecules re-enter the dendrimer's interior and their fluorescence again disappears.  相似文献   

11.
Two series of phosphorus dendrimers functionalized by maleimide derivatives are synthesized, as well as three new monomeric maleimide derivatives, of which two are characterized by X-ray diffraction. The first series of phosphorus dendrimers possesses maleimide derivatives as end groups (6-48, from generation 0 to generation 3). The second series of dendrimers possesses a single copy of the same maleimide derivative linked "off-center" to a cyclotriphosphazene core, leading to dissymmetrical dendrimers; this series is synthesized from generation 0 to generation 2. The fluorescence properties of both series of dendrimers and of monomers are studied, affording new information. First, the presence of labile hydrogen extinguishes the fluorescence. Second, the grafting of the fluorophore(s) directly to the core affords highly fluorescent compounds. Finally, an original influence of the branches possessing phosphorhydrazone linkages toward the fluorescence properties is shown.  相似文献   

12.
The physicochemical properties of quaternized poly(amidoamine) dendrimers (generation 4) with methyl or octyl groups and of their mixtures with sodium dodecyl sulfate (SDS) in aqueous solutions have been investigated using several techniques including surface tension, fluorescence of pyrene, and dynamic light scattering. In the single systems of the dendrimers, the dendrimer with octyl groups shows lower surface tension and lower micropolarity than the dendrimer with methyl groups. The hydrodynamic radii of two quaternized poly(amidoamine) dendrimers are considerably large, indicating the formation of aggregates. In the mixed systems of quaternized poly(amidoamine) dendrimers and SDS, the dendrimer with octyl groups-SDS mixed system shows very low surface tension and low micropolarity even in the presence of extremely low SDS concentration compared to those of the dendrimer with methyl groups-SDS mixed system. Maximum turbidity for both systems is observed at around the mixed molar ratio of dendrimer:SDS=1:1.5 where distinct changes have also been confirmed by surface tension, fluorescence of pyrene, and electrical conductivity measurements.  相似文献   

13.
有机溶剂中联苯和联三苯的电化学氧化聚合   总被引:4,自引:0,他引:4  
崔胜云 《电化学》2000,6(4):428-433
应用电化学石英晶体微天平和反射光谱电化学方法研究了 0 .10molL 1四氟硼酸化四丁铵 二氯甲烷溶液中联苯和联三苯在铂电极上的氧化聚合 .结果表明 ,联苯和联三苯经氧化后在溶液中偶合成聚合物 ,生成的聚合物沉积在铂电极表面 .聚合反应是通过单体氧化后生成的自由基离子偶合进行的 .聚合物的生成量与单体氧化生成的自由基离子的量有关 .由于联三苯的氧化电位低于联苯 ,因此在相同的实验条件下前者在铂电极上的聚合沉积速度较快 .聚合过程的吸收光谱红移说明随着电解的进行 ,氧化的联苯和联三苯的自由基离子聚合成长链的聚合物  相似文献   

14.
Recently, thermally activated delayed fluorescence (TADF) materials have received increasing attention as effective emitters for organic light‐emitting diodes (OLEDs). However, most of them are usually employed as dopants in a host material. In this report, carbazole dendrimers with a triphenyl‐s‐triazine core are reported, which are the first solution‐processable, non‐doped, high‐molecular‐weight TADF materials. The dendrimers were obtained by a new and facile synthetic route using the tert‐butyldimethylsilyl moiety as a protecting group. All dendrimers showed TADF in toluene. Measurements of the temperature‐dependent luminescence lifetime revealed that spin‐coated neat films also showed TADF with moderate quantum yields. OLED devices incorporating these dendrimers as spin‐coated emitting layers gave external quantum efficiencies of up to a 3.4 %, which suggests that this device is harvesting triplet excitons. This result indicates that carbazole dendrimers with attached acceptors are potential TADF materials owing to their polarized electronic structure (with HOMO–LUMO separation).  相似文献   

15.
We have synthesized three new donor–acceptor‐type monomers to achieve soluble and processable low‐band gap polymers, 4,7‐bis(4‐octyl‐2‐thienyl)‐2,1,3‐benzothiadiazole (B4TB), 4,7‐bis(3‐octyl‐2‐thienyl)‐2,1,3‐benzothiadiazole (B3TB), and 4‐(3‐octyl‐2‐thienyl)‐7‐(4‐octyl‐2‐thienyl)‐2,1,3‐benzothiadiazole (B34TB), by the Suzuki coupling reaction. Using B4TB and B3TB, two soluble high molecular weight regioregular head‐to‐head and tail‐to‐tail polymers poly[4,7‐bis(4‐octyl‐2‐thienyl)‐2,1,3‐ benzothiadiazole] (PB4TB) and poly[4,7‐bis(3‐octyl‐2‐thienyl)‐2,1,3‐benzothiadiazole] (PB3TB) were prepared via iron(III) chloride‐mediated oxidative polymerization. The structures of the polymers were confirmed by 1H and 13C NMR, and the molecular weights were determined by size exclusion chromatography. The optical properties (absorbance and fluorescence) of the monomers and polymers were studied and compared with unsubstituted analogues. The monomers and polymers bearing octyl substituents on the thiophene rings pointing away from the benzothiadiazole units (B4TB and PB4TB) possess a more planar structure, and their optical spectra appear redshifted as compared with those having the octyl chain nearer to the benzothiadiazole (B3TB and PB3TB). The optical band gaps of PB3BT (Eg = 2.01 eV) and PB4BT (Eg = 1.96 eV), however, are at much higher energy levels than that of the unsubstituted electrochemically polymerized PBTB material (Eg = 1.1–1.2 eV) as a result of steric effects of the octyl chains. The electrochemical properties of the monomers and polymers were examined using cyclic voltammetry and reflect the effect of alkyl substitution. B4TB and PB4TB were oxidized at a lower potential than B3TB and PB3TB, whereas their reduction potentials were less negative. The electrochemical band gap calculated from the onset of the reduction and oxidation process agreed with the optical band gap calculated from the absorption edges. © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 40: 251–261, 2002  相似文献   

16.
Mesogen jacketed liquid crystalline poly(1‐alkyne) and poly(1‐phenyl‐1‐alkyne) linked pendants of terphenyl mesogens with hexyloxy tails at the waist position (? {RC?C? [(CH2)3OOC‐terpheyl‐(OC6H13)2]}n? , where R?H, PHATP(OC6)2 ; R?C6H5, PPATP(OC6)2 ) were synthesized. The influences of structural variations on the thermal, mesomorphic, and luminescent properties were investigated. Polymerizations of all monomers are carried out by WCl6‐Ph4Sn catalysts successfully. The polymers are stable (Td ≥ 340 °C) and soluble in common solvents. The monomers and polymers show enantiotropic SmA phases in the heating and cooling processes, and the lateral side chains of the mesogenic units are perpendicular to the main chain. The “jacket effect” of chromophoric terphenyl core “shell” around the main chain also contributes to polymers with high photoluminescence, and the pendant‐to‐backbone energy transfer path is involved in the luminescence process of this polymers. In comparison with monosubstituted polyacetylene PHATP(OC6)2 , the disubstituted polyacetylene PPATP(OC6)2 shows better photoluminescence in both THF solution and film, and exhibited about 40 nm red‐shifted than PHATP(OC6)2 , indicating that the “jacket effect” of terphenyl mesogens forces poly(1‐phenyl‐1‐alkyne) backbone to extend in a more planar conformation with a better conjugation. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2010  相似文献   

17.
Compounds that can gelate aqueous solutions offer an intriguing toolbox to create functional hydrogel materials for biomedical applications. Amphiphilic Janus dendrimers with low molecular weights can readily form self‐assembled fibers at very low mass proportion (0.2 wt %) to create supramolecular hydrogels (G′?G′′) with outstanding mechanical properties and storage modulus of G′>1000 Pa. The G′ value and gel melting temperature can be tuned by modulating the position or number of hydrophobic alkyl chains in the dendrimer structure; thus enabling exquisite control over the mesoscale material properties in these molecular assemblies. The gels are formed within seconds by simple injection of ethanol‐solvated dendrimers into an aqueous solution. Cryogenic TEM, small‐angle X‐ray scattering, and SEM were used to confirm the fibrous structure morphology of the gels. Furthermore, the gels can be efficiently loaded with different bioactive cargo, such as active enzymes, peptides, or small‐molecule drugs, to be used for sustained release in drug delivery.  相似文献   

18.
Dendrimers with a C60 core have been obtained by cyclization of dendritic bis-malonate derivatives at the carbon sphere. The resulting bis-methanofullerene derivatives have been characterised by electrospray (ES) and/or MALDI-TOF mass spectrometries. UV-VIS absorption spectra, fluorescence spectra, and fullerene singlet excited state lifetimes have been determined in solvents of different polarity (toluene, dichloromethane, acetonitrile). These data suggest a tighter core/periphery contact upon increase of solvent polarity and dendrimer size. In all the investigated solvents, the fullerene triplet lifetimes are steadily increased with the dendrimer volume, reflecting lower diffusion rates of O2 inside the dendrimers along the series. Measurements of quantum yields of singlet oxygen sensitization indicate that longer lived triplet states generate lower amounts of singlet oxygen (1O2) in dichloromethane but not in apolar toluene suggesting a tighter contact between the dendritic branches and the fullerene core in CH2Cl2. In acetonitrile, the trend in singlet oxygen production is peculiar. Effectively, enhanced singlet oxygen production is monitored for the largest dendrimer. This reflects specific interactions of excited 1O2 molecules with the dendritic wedges, as probed by singlet oxygen lifetime measurements, possibly as a consequence of trapping effects.  相似文献   

19.
Phenylacetylene dendrimers 9 – 11 containing fluorene as the core with a larger HOMO‐LUMO energy gap were synthesized and characterized. Their structure and properties were studied by UV, FL, 1H NMR, MS etc. These novel phenylacetylene dendrimers exhibit unique photophysical properties. They exist a new absorption band around 340 nm whose molar coefficient decreases with increasing generation. The band‐gaps of 9 – 11 are 3.54, 3.43 and 3.02 respectively. The fluorescence quantum yield of 10 is as high as 0.61.  相似文献   

20.
The optical properties and electrical properties of a series of low‐band‐gap conjugated copolymers, in which alkyl side chains were substituted at various positions, were investigated using donor–acceptor conjugated copolymers consisting of a cyclopentadithiophene derivative and dithienyl‐benzothiadiazole. With substituted side chains, the intrinsic properties of the copolymers were significantly altered by perturbations of the intramolecular charge transfer. The absorption of poly[2, 6‐(4,4‐bis(2‐octyl)‐4H‐cyclopenta‐[2,1‐b:3,4‐b′]dithiophene)‐alt‐4, 7‐bis(4‐octyl‐thiophene‐2‐yl)benzo‐2,1,3‐thiadiazole] [ PCPDT‐ttOTBTOT ( P2 )], which assumed a tail–tail configuration, tended to blue shift relative to the absorption of poly[2,6‐(4,4‐bis(2‐octyl)‐4H‐cyclopenta‐[2,1‐b:3,4‐b′]dithiophene)‐alt‐4,7‐bis (thiophene‐2‐yl)benzo‐2,1,3‐thiadiazole] [ PCPDT‐TBTT ( P1 )]. The absorption of poly[2,6‐(4,4‐bis(2‐octyl)‐4H‐cyclopenta‐[2,1‐b:3, 4‐b′]dithiophene)‐alt‐4,7‐bis(3‐octyl‐thiophene‐2‐yl)benzo‐2,1,3‐thiadiazole] [ PCPDT‐hhOTBTOT ( P3 )], which assumed a head–head configuration, was blue shifted relative to that of P2 . The electrical transport properties of field‐effect transistors were sensitive to the side chain position. The field‐effect mobility in P2 (μ2 = 1.8 × 10?3 cm2/V s) was slightly lower than that in P1 (μ1 = 4.9 × 10?3 cm2/V s). However, the mobility of P3 was very low (μ3 = 3.8 × 10?6 cm2/V s). Photoexcitation spectroscopy showed that the charge generation efficiency (shown in transient absorption spectra) and polaron pair mobility in P1 and P2 were higher than in P3 , yielding P1 and P2 device performances that were better than the performance of devices based on P3 . © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号