首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
9.
New polymeric materials have been prepared by the cationic copolymerization of regular soybean oil, low saturation soybean oil, i.e. LoSatSoy oil, or conjugated LoSatSoy oil with styrene and divinylbenzene, norbornadiene or dicyclopentadiene initiated by boron trifluoride diethyl etherate (BF 3·OEt 2) or related modified initiators. The effects of the stoichiometry, the type of soybean oil and the alkene comonomer on the damping behavior of the resulting polymers have been investigated. The damping properties have been quantitatively evaluated by the loss tangent maximum (tan δ) max, ­the temperature range ΔT for efficient damping (tan δ > 0.3), and the integrals of the linear tan δ v. temperature curves (tan δ area, TA). These bulk materials are composed primarily of soybean oil‐styrene‐divinylbenzene random copolymers with considerable variability in the backbone compositions. The good damping properties of the soybean oil polymers are presumably determined by the presence of fatty acid ester side groups directly attached to the polymer backbone and the segmental heterogeneities resulting from crosslinking. In general, crosslinking reduces the (tan δ) max and the TA values, but broadens the region of efficient damping (ΔT). Soybean oil polymeric materials with appropriate compositions and crosslink densities are capable of efficiently damping over a temperature region in excess of 110 °C and provide noise and vibration attenuation over broad temperature and frequency ranges. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

10.
11.
12.
13.
14.
15.
16.
“Aqua materials” that contain water as their major component and are as robust as conventional plastics are highly desirable. Yet, the ability of such systems to withstand harsh conditions, for example, high pressures typical of industrial applications has not been demonstrated. We show that a hydrogel‐like membrane self‐assembled from an aromatic amphiphile and colloidal Nafion is capable of purifying water from organic molecules, including pharmaceuticals, and heavy metals in a very wide range of concentrations. Remarkably, the membrane can sustain high pressures, retaining its function. The robustness and functionality of the water‐based self‐assembled array advances the idea that aqua materials can be very strong and suitable for demanding industrial applications.  相似文献   

17.
18.
Ionizable amino acids in protein‐based hydrogels can confer pH‐responsive behavior. Because elastin‐like polypeptides (ELPs) have an established sequence and can crosslink to form hydrogels, they are an ideal system for creating pH‐sensitive materials. This study examines different parameters that might affect pH‐sensitive behavior and characterizes the mechanical and physical properties between pH 3 and 11 of three ELP‐based crosslinked hydrogels. The first finding is that varying the amount of crosslinker affects the overall stiffness and resilience of the hydrogels but does not strongly affect water content, swelling ratio, or pH sensitivity. Second, the choice of two popular tag sequences, which vary in histidine and aspartic acid content, does not have a strong effect on pH‐sensitive properties. Last, selectively blocking lysine and tyrosine residues through acetylation significantly decreases the pH‐sensitive zeta potential. Acetylated hydrogels also demonstrate different behavior at low pH values with reduced swelling, reduced water content, and higher stiffness. Overall, this work demonstrates that ELP hydrogels with ionizable groups are promising materials for environmentally‐responsive applications such as drug delivery, tissue engineering, and microfluidics.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号