首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A multiscale theoretical investigation has been performed to study the hydrogen and acetylene storage in Ca2+- and Mg2+-doped COFs (COF-105 and COF-108). The first-principles calculations show that the Ca2+ and Mg2+ can be immobilized at the COFs surfaces, and the doped Ca and Mg cations can adsorb five H2 molecules and three C2H2 molecules with ideal binding energies. The Grand Canonical Monte Carlo (GCMC) simulations were carried out to obtain the hydrogen and acetylene uptakes of Ca2+- and Mg2+-doped COFs at room temperature in the different pressure ranges. Our results demonstrate that, at T = 298 K and p = 100 bar, the total gravimetric uptakes of H2 in Ca2+-doped COF-105 and COF-108 reach 6.78 and 6.54 wt%, respectively, and a higher uptakes of 7.14 and 7.27 wt% have been reached for Mg2+-doped COF-105 and COF-108, respectively. At T = 298 K and p = 1 bar, the acetylene uptakes of Ca2+-doped COF-105, Ca2+-doped COF-108, Mg2+-doped COF-105, and Mg2+-doped COF-108 are 406.42, 366.24, 308.07, and 319.88 cm3/g (corresponding to the excess uptakes of 358.37, 316.38, 236.7109, and 245.42 cm3/g), respectively. The Ca2+-doped COF-105 displays a highest acetylene storage capacity among all materials reported. The Ca2+- and Mg2+-doped COFs can be very practical hydrogen or acetylene storage medium in the future.  相似文献   

2.
A novel type of three-dimensional (3D) tetrahedral silsesquioxane-based porous frameworks (TSFs) with diamond-like structure was computationally designed using the density functional theory (DFT) and classical molecular mechanics (MM) calculations. The hydrogen adsorption and diffusion properties of these TSFs were evaluated by the methods of grand canonical Monte Carlo (GCMC) and molecular dynamics (MD) simulations. The results reveal that all designed materials possess extremely high porosity (87–93 %) and large H2 accessible surface areas (5,268–6,544 m2 g?1). Impressively, the GCMC simulation results demonstrate that at 77 K and 100 bar, TSF-2 has the highest gravimetric H2 capacity of 29.80 wt%, while TSF-1 has the highest volumetric H2 uptake of 65.32 g L?1. At the same time, the gravimetric H2 uptake of TSF-2 can reach up to 4.28 wt% at the room temperature. The extraordinary performances of these TSF materials in hydrogen storage made them enter the rank of the top hydrogen storage materials so far.  相似文献   

3.
The structures and hydrogen storage capacities of (AlN)n (n = 3-5) clusters have been systematically investigated by using density functional theoretical calculations. At ωB97xD/6-311 + G(d, p) level, the planar structures of (AlN)n (n = 3-5) can adsorb 6-10 H2 molecules with average adsorption energies in the range 0.16 to 0.11 eV/H2, which meet the adsorption energy criteria of reversible hydrogen storage. The gravimetric density of H2 adsorbed on (AlN)n clusters can reach 8.96 wt%, which exceed the target set by Department of Energy. The hydrogen adsorption energies with Gibbs free energy correction indicate that the adsorption of 6 H2 in (AlN)3, 8 H2 in (AlN)4 and 10 H2 in (AlN)5 is energetically favorable below 96.48, 61.43, and 34.21 K, respectively. These results are expected to motivate further the applications of clusters to be efficient hydrogen storage materials.  相似文献   

4.
Molecular interaction between hydrogen molecules and B2H4M (M=Li, Be, Sc, Ti, V) complexes has been studied using the DFT method (M06 functional) and 6-311++G** basis set. The hydrogen uptake capacity of the complexes considered is higher than the target set by the US Department of Energy (5.5 wt% by 2020). The metal atom bound strongly to the B2H4 substrate. Adsorption of molecular hydrogen on Be-, Ti-, and V-decorated complexes is thermodynamically possible for all the pressures and temperatures considered whereas it is unfavorable for Li-decorated complexes for all the pressure and temperatures. For the Sc-doped complexes, adsorption of molecular hydrogen is favorable below 330 K and entire pressure range considered. All the H2 adsorbed complexes are kinetically stable. For all the complexes, the interaction between the inorganometallic complexes and the H2 molecules adsorbed is attractive whereas that between adsorbed H2 molecules is repulsive. We have also performed molecular dynamics simulations to confirm the same number of H2 molecule adsorption from the simulations and DFT calculations.  相似文献   

5.
This work reports hydrogen adsorption on C3H3–TM (TM = Sc, Ti) organometallic compounds using second-order Møller–Plesset perturbation theory method. Two types of organometallic compounds are considered viz. transition metal-capped and transition metal-inserted. Maximum five and four hydrogen molecules were adsorbed on Sc-capped ScC3H3 and Ti-capped TiC3H3 complexes, thereby giving gravimetric hydrogen uptake capacity of 10.71 and 8.5 wt%, respectively. The gravimetric H2 uptake capacity 10.71 wt% of ScC3H3 complex is higher by 1.41 wt% than that of Sc-capped ScC4H4 organometallic complex reported earlier. The hydrogen uptake capacity 8.5 wt% of TiC3H3 is in between the uptake capacity of 6.61 and 9.1 wt% shown by Ti-capped TiC5H5 and TiC4H4 organometallic complexes, respectively. The Sc-capped and Sc-inserted ScC3H3 adsorb same number of H2 molecules whereas Ti-inserted TiC3H3 complex adsorbs less number of H2 molecules than that of Ti-capped TiC3H3 complex. Nature of interactions between different molecules in hydrogen-adsorbed complexes is studied. The binding energy per H2 molecules differ by about 0.1 eV in transition metal-capped and transition metal-inserted structures.  相似文献   

6.
7.
基于PAF-301分子模型通过Li 掺杂或B取代等模式设计了几种新型多孔芳香骨架(PAFs)材料, 采用量子力学和分子力学方法对新材料的储氢性能进行研究. 由量子力学计算得到了不同分子片段与H2之间的结合能, 并结合DDEC方法计算了各分子片段的原子电荷分布. 利用巨正则蒙特卡洛(GCMC)模拟方法计算了77和298 K下H2在不同PAFs材料中的吸附平衡性质. 结果表明, H2直接与苯环的结合能较低, 但掺杂Li 原子能够提高H2与六元环的结合能, 同时Li 原子体现出较高的正电性质, B原子取代苯环中的两个C原子后, 使得原有C原子电负性增强; 77 K下PAF-301Li 具有最高的储氢性能, 而PAF-C4B2H4-Li2-Si 和PAF-C4B2H4-Li2-Ge体现出较好的常温储氢性能, 各种材料的常温储氢性能远低于其低温储氢性能. 通过77 K下H2在PAFs材料中的等位能面分布和吸附平衡质心密度分布对H2在PAFs 材料中的优先吸附位置进行分析, 发现在PAF-301 和PAF-301Li 骨架中, 由于中心能量较低的等位能区域范围较宽, H2在其中存在四个明显的吸附高密度分布区域, 而其它三种PAFs晶胞中心能量较低的等位能区域范围较窄, 使得H2在其中只存在两个明显的吸附高密度分布区域.  相似文献   

8.
Considering intrinsic properties of conjugated polyfluorenes and special functions of porous polymers, synthesis of fluorinated porous poly(spirobifluorene) via direct C?H arylation polycondensation is explored. Owing to the contorted structure and cross-linking nature, the obtained polymer FPSBF shows permanent porosities with Brunauer–Emmett–Teller specific surface area up to 700 m2 g?1 and exhibits a narrow pore size distribution with the dominant pore size at about 0.63 nm, which is more suitable for adsorption of small gas molecules. Based on the measured gas physisorption isotherms with pressure up to 1.13 bar, the obtained polymer shows good uptaking capacities for hydrogen (1.30 wt% at 1.0 bar and 77 K) and methane (4.80 wt% 1.0 bar and 273 K). Moreover, FPSBF has significant adsorption selectivity for CH4 against N2 and the estimated ideal adsorption selectivity ratio is up to 30/1 at 1.0 bar and 273 K, which makes the material possess potential application in gas separation.  相似文献   

9.
Employing density functional calculations including an empirical dispersion term, we investigated the hydrogenation of an aluminum nitride nanosheet (h-AlN) with atomic and molecular hydrogen. It was found that atomic H prefers to be adsorbed on an N atom rather than Al, releasing energy of 21.1 kcal/mol. The HOMO/LUMO energy gap of the sheet is dramatically reduced from 107.9 to 44.5 kcal/mol, upon the adsorption of one hydrogen atom. The adsorption of atomic H on the h-AlN presents properties which are promising for nanoelectronic applications. The molecular H2 was found to be adsorbed collinearly on an N atom and dissociated to two H atoms on Al–N bond. Calculated barrier and adsorption energies for this dissociation process are about +18.9 and ?1.9 kcal/mol. We predict that each nitrogen atom in an AlN sheet can adsorb two hydrogen molecules on opposite sides of the sheet, and thus the gravimetric density for hydrogen storage on AlN sheet is evaluated to be about 8.9 wt%.  相似文献   

10.
The quantum mechanics (QM) method and grand canonical Monte Carlo (GCMC) simulations are used to study the effect of lithium cation doping on the adsorption and separation of CO2, CH4, and H2 on a twofold interwoven metal–organic framework (MOF), Zn2(NDC)2(diPyNI) (NDC=2,6‐naphthalenedicarboxylate; diPyNI=N,N′‐di‐(4‐pyridyl)‐1,4,5,8‐naphthalenetetracarboxydiimide). Second‐order Moller–Plesset (MP2) calculations on the (Li+–diPyNI) cluster model show that the energetically most favorable lithium binding site is above the pyridine ring side at a distance of 1.817 Å from the oxygen atom. The results reveal that the adsorption capacity of Zn2(NDC)2(diPyNI) for carbon dioxide is higher than those of hydrogen and methane at room temperature. Furthermore, GCMC simulations on the structures obtained from QM calculations predict that the Li+‐doped MOF has higher adsorption capacities than the nondoped MOF, especially at low pressures. In addition, the probability density distribution plots reveal that CO2, CH4, and H2 molecules accumulate close to the Li cation site. The selectivity results indicate that CO2/H2 selectivity values in Zn2(NDC)2(diPyNI) are higher than those of CO2/CH4. The selectivity of CO2 over CH4 on Li+‐doped Zn2(NDC)2(diPyNI) is improved relative to the nondoped MOF.  相似文献   

11.
A three‐dimensional (3D) cage‐like organic network (3D‐CON) structure synthesized by the straightforward condensation of building blocks designed with gas adsorption properties is presented. The 3D‐CON can be prepared using an easy but powerful route, which is essential for commercial scale‐up. The resulting fused aromatic 3D‐CON exhibited a high Brunauer–Emmett–Teller (BET) specific surface area of up to 2247 m2 g?1. More importantly, the 3D‐CON displayed outstanding low pressure hydrogen (H2, 2.64 wt %, 1.0 bar and 77 K), methane (CH4, 2.4 wt %, 1.0 bar and 273 K), and carbon dioxide (CO2, 26.7 wt %, 1.0 bar and 273 K) uptake with a high isosteric heat of adsorption (H2, 8.10 kJ mol?1; CH4, 18.72 kJ mol?1; CO2, 31.87 kJ mol?1). These values are among the best reported for organic networks with high thermal stability (ca. 600 °C).  相似文献   

12.
The present work aims at providing additional insight into the crucial effect of pore size and pressure on the adsorption of H2 and D2 in porous carbons by means of Grand Canonical Monte Carlo simulations in model slit micropores at 77 K. In order to address the quantum behavior of the molecules the Feynman–Hibbs corrected LJ interaction potential is used for fluid–solid and fluid–fluid interactions. Based on the GCMC isotherms for the two isotopes, D2 selectivity over H2 is deduced for pores with different sizes as a function of pressure. Furthermore, GCMC results are coupled with experimental high pressure H2 and D2 adsorption data at 77 K for a commercial carbon molecular sieve (Takeda 3A).  相似文献   

13.
Using first-principles calculations, we investigate the adsorption behaviors of H2 in B/C/N sheets (including BCN, BC2N, and BC3N) and discuss the effect of external electric fields on H2 adsorbed for BCN and BC2N sheets. For a single H2 adsorbed on BCN and BC2N sheets, the adsorption energy increases dramatically with the electric field intensity increasing, and the maximum adsorption energy can reach 0.55 eV in the electric field of F = 0.050 a.u. and one layer H2 can adsorb on BCN and BC2N sheets, corresponding to the maximum hydrogen storage capacity of 5.1 wt%. The average adsorption energy calculated larger than that of in the field-free case.  相似文献   

14.
Chemical complex borohydride is a promising hydrogen storage material due to its large gravimetric and volumetric hydrogen capacities. However, the high dehydrogenation temperature and sluggish kinetics still place strong restrictions on its practical application in the hydrogen storage field. In this work, a synergetic approach of partial cation substitution and catalysis is developed to enhance the hydrogen storage properties of LiBH4. The Li/Mg based dual-cation borohydride (LiMg2(BH4)5, LMBH) was successfully synthesized by wet chemical ball milling of LiBH4 and MgCl2. The optimal (LMBH (4.5:1) sample, LiBH4 and MgCl2 in molar ratios of 4.5:1, possesses a maximum hydrogen desorption capacity (11.27 wt%) and the outstanding initial decomposition temperature (~250 °C). Importantly, the LMBH (4.5:1) doped with TiF3 shows a remarkable onset dehydrogenation temperature as low as 97.2 °C, which is about 190 °C lower than that of pristine LiBH4. The LMBH (4.5:1) doped with TiF3 system releases 7.98 wt% H2 within 170 min below 350 °C. And the dehydrogenation product of doped composite can reversibly absorb ~4.72 wt% H2 at a relatively moderate temperature of 280 °C, which is substantially lower than the reversible hydrogen absorption temperature of previous modified borohydride systems. Based on the structural characteristic analyses, the TiF3 reacts with LMBH (4.5:1) to in-situ form actual catalytic components of TiB2 and TiH2 as the actual catalysts for LMBH (4.5:1), resulting in the improved hydrogen re/dehydrogenation properties. The synergetic modification of Li/Mg dual-cation substitution and TiB2/TiH2 catalysis may lead to the development of light-metal borohydrides with outstanding hydrogen storage properties.  相似文献   

15.
The adsorption behavior of 197Hg and 183–185Hg on red amorphous selenium (red a-Se) and trigonal selenium (t-Se) was investigated experimentally by off-line and on-line gas chromatographic methods, in preparation of a sensitive chemical separation and characterization of the transactinides copernicium (Cn, Z = 112) and flerovium (Fl, Z = 114). Monte-Carlo simulations of a diffusion controlled deposition were in good agreement with the experimental results, assuming as interaction limits ?ΔH ads red a-Se (Hg) > 85 kJ/mol, and ?ΔH ads t-Se (Hg) < 60 kJ/mol. Both Se allotropes can be used as stationary surfaces in comparative gas-chromatographic chemical investigations of Cn and Fl.  相似文献   

16.
The electrochemical hydrogen storage properties of Ni-supported multi-walled carbon nanotube (Ni/MWCNT) electrodes were investigated using charge/discharge (C&D) and cyclic voltammetry (CV) techniques. Nickel NPs were deposited on the MWCNT surface, which was first chemically oxidized by H2SO4 and HNO3 (3:1, v/v). Hydrogen storage was carried out by using the Ni/MWCNT electrode as the working electrode in the electrochemical cell. A set of various current densities were applied to the cell to produce (C&D) cycles, and it became optimum corresponding to 1.5 mA current. According to the electrochemical test results, the highest electrochemical discharge capacity of 1625 mAh g?1 was obtained for the electrode with ratio of 4:1 (MWCNTs to Ni) in the initial cycle, which corresponded to 6.07 wt% H2. The storage capacity was increased and reached to 4909 mAh g?1 (18.34 wt% H2) after 20 cycles, and the electrode maintained the specific capacity as cycling continued. Thus, the Ni/MWCNT electrode displays an excellent cycle stability and a high capacity reversibility. CV measurements also showed that the electrochemical adsorption and desorption amount of hydrogen was increased by Ni loading onto the CNTs and indicated that the electrochemical hydrogen adsorption of the electrode has an activated period.  相似文献   

17.
Experimental data of nitrogen adsorption (T = 77.3 K) from gaseous phase measured on commercial closed carbon nanotubes are presented. Additionally, we show the results of N2 adsorption on compressed (using hydraulic press) CNTs. In order to explain the experimental observations the results of GCMC simulations of N2 adsorption on isolated or bundled multi-walled closed nanotubes (four models of bundles) are discussed. We show that the changes of the experimental adsorption isotherms are related to the compression of the investigated adsorbents. They are qualitatively similar to the theoretical observations. Taking into account all results it is concluded that in the “architecture” of nanotubes very important role has been played by isolated nanotubes.  相似文献   

18.
19.
Reversible hydrogen storage under ambient conditions has been identified as a major bottleneck in enabling a future hydrogen economy. Herein, we report an amorphous vanadium(III) alkyl hydride gel that binds hydrogen through the Kubas interaction. The material possesses a gravimetric adsorption capacity of 5.42 wt % H2 at 120 bar and 298 K reversibly at saturation with no loss of capacity after ten cycles. This corresponds to a volumetric capacity of 75.4 kgH2 m?3. Raman experiments at 100 bar confirm that Kubas binding is involved in the adsorption mechanism. The material possesses an enthalpy of H2 adsorption of +0.52 kJ mol?1 H2, as measured directly by calorimetry, and this is practical for use in a vehicles without a complex heat management system.  相似文献   

20.
Magneli phase titanium suboxide, Ti n O2n ? 1, with Brunauer–Emmett–Teller surface area up to 25 m2 g?1 was prepared using the heat treatment of titanium oxide (rutile) mixed with polyvinyl alcohol in ratios from 1:3 to 3:1. XRD patterns showed Ti4O7 as the major phase formed during the heat treatment process. The Ti n O2n ? 1 showed excellent electrochemical stability in the potential range of ?0.25 to 2.75 V vs. standard hydrogen electrode. The Ti n O2n ? 1 was employed as a polymer electrolyte membrane fuel cell catalyst support to prepare 20 wt% platinum (Pt)/Ti n O2n ? 1 catalyst. A fuel cell membrane electrode assembly was fabricated using the 20 wt% Pt/Ti n O2n ? 1 catalyst, and its performance was evaluated using H2/O2 at 80 °C. A current density of 0.125 A?cm?2 at 0.6 V was obtained at 80 °C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号