首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
材料表面在发生熔化前,微射流可能是微喷射的主要物理机制之一。曾鉴荣等在纯铅的实验中发现,当靶板中出现三波结构(即弹性先驱波、相变波和塑性波)时,测得峰值压力为22GPa时纯铅样品的微喷射量比峰值压力为20GPa的单次冲击加载喷射量几乎减少了1/2。Asay在铝平面样品的微喷射实验中,也发现随着冲击波加载速率的减小(上升沿宽度增加),喷射量大致按指数规律减小。对于自由面上缺陷平均尺度为5lain的样品,在冲击加载变到35ns波阵面宽度的加载条件时,喷射量约降低了2个数量级。  相似文献   

2.
通过平板冲击实验研究了富含微缺陷的非均质脆性固体的冲击压缩响应特性.选取“强角闪石化橄榄二辉岩”作为样品材料,利用激光速度干涉仪测量样品后自由面的速度历史,在冲击加载应力远低于样品材料Hugoniot弹性极限的条件下,观测到了表征破坏波出现的再加载信号,并且该破坏波的速度远大于玻璃中破坏波的速度,以接近于冲击波的速度在样品内向前传播,其形成机理与玻璃样品中的破坏机理不同,称之为“就位扩展机理”.采用同一冲击加载应力(~3.9GPa)作用于不同厚度的样品,获得了破坏波穿过样品的运动过程,确定出样品中破坏波的轨迹线近似为一条不过原点的直线,相应的产生此破坏波的弛豫时间约为0.5 μs.  相似文献   

3.
动载荷下金属板表面的微物质喷射   总被引:4,自引:4,他引:0       下载免费PDF全文
 用石英晶体传感器技术,测量了冲击波作用下铝合金(Ly-12)和纯铅样品自由表面的微物质喷射量。在冲击压力为32 GPa时,测得光洁度为3.2、0.4、0.1 μm的铝合金的微物质喷射量分别为1.53~3.28 g/m2,0.2~0.3 g/m2和0.053~0.096 g/m2,对光洁度为3.2 μm的纯铅样品,在压力为13 GPa和47 GPa时,微物质喷射量分别微26.4~42.4 g/m2和183~328 g/m2。在最高冲击压力约为20 GPa时,做了多次冲击下的微物质喷射量测量,发现比单次冲击加载下的喷射量有很大的减少。结果表明,微物质喷射量与自由表面的加工条件、局部熔化和加载方式等因素有关。  相似文献   

4.
 对一种新型的钽铌合金材料进行了冲击压缩特性实验研究,通过超声测量得到了其常态下的横波和纵波声速,进而计算得到了其相关的一些静态力学参量。通过二级轻气炮加载技术,得到其在60~196 GPa压力范围内的冲击Hugoniot线。这一测量结果与混合物叠加法估算的结果符合较好,并将这种新型合金材料的力学特性与两种钨合金材料进行了简单对比。比较结果显示,Ta-Nb合金材料是一种具有较好工程应用前景的材料。  相似文献   

5.
彭辉  裴晓阳  李平  贺红亮  柏劲松 《物理学报》2015,64(21):216201-216201
本文对平面冲击加载下高纯铜初始层裂的微损伤特性进行了研究. 利用准三维的表面轮廓测试技术, 对冲击加载“软回收”的样品截面进行测试. 通过对测试数据的重构、量化和统计分析, 结果表明: 拉伸应力持续时间和加载应力幅值的增加, 都会加剧样品内部损伤局域化程度. 样品内损伤区域宽度是亚微米尺度的损伤演化的结果, 并且亚微米尺度的演化速率随着拉伸应变率的增加而单调递增. 通过统计获得了样品内微损伤的尺寸分布特征, 并分析了其与损伤演化进程的关联.  相似文献   

6.
多孔脆性材料对高能量密度脉冲的吸收和抵抗能力   总被引:2,自引:0,他引:2       下载免费PDF全文
喻寅  贺红亮  王文强  卢铁城 《物理学报》2015,64(12):124302-124302
作用在脆性结构材料表面的高能量密度脉冲会以冲击波的形式传播进入材料内部, 导致压缩破坏和功能失效. 通过设计并引入微孔洞, 显著增强了脆性材料冲击下的塑性变形能力, 从而使脆性结构材料可以有效地吸收耗散冲击波能量, 并抑制冲击诱导裂纹的扩展贯通. 建立格点-弹簧模型并用于模拟研究致密和多孔脆性材料在高能量密度脉冲加载下的冲击塑性机理、能量吸收耗散过程和裂纹扩展过程. 冲击波压缩下孔洞塌缩, 导致体积收缩变形和滑移以及转动变形, 使得多孔脆性材料表现出显著的冲击塑性. 对致密样品、气孔率5%和10%的多孔样品吸能能力的计算表明, 多孔脆性材料吸收耗散高能量密度脉冲的能力远优于致密脆性材料. 在短脉冲加载下, 相较于遭受整体破坏的致密脆性材料, 多孔脆性材料以增加局部区域的损伤程度为代价, 阻止了严重的冲击破坏扩展贯通整个样品, 避免了材料的整体功能失效.  相似文献   

7.
基于有限元方法,采用Monte-Carlo法建立了考虑炸药颗粒尺寸、形状和位置随机分布的高聚物黏结炸药(PBX)的细观结构。计算分析了冲击加载和斜波加载下黏结剂、孔洞缺陷对PBX炸药细观结构点火特性的影响,研究发现黏结剂含量的增加有效提高了炸药的临界点火压力。相比冲击加载,斜波加载下PBX炸药的临界点火压力有明显提升。炸药内部的孔洞缺陷对临界点火压力的影响与加载方式相关,冲击加载下,孔洞缺陷降低了PBX炸药的临界点火压力;而斜波加载下,孔洞缺陷提高了PBX炸药的临界点火压力。  相似文献   

8.
为研究冲击塑性变形产生的缺陷对MgO单晶透明性的影响,采用40通道(波长)纳秒时间分辨高温计和冲击波原位光源技术,对在一维应变冲击加载下MgO单晶的透射谱进行了实验测量。冲击波加载方向垂直于样品(100)晶面,测谱范围为400~800nm,得到了2个压力点(约50GPa和约70GPa)的吸收系数随波长的变化曲线,从实测曲线发现了6个明显的特征吸收峰,其中心波长分别为410、460、490、520、580和660nm。通过对比分析,确定出410、460、490和580nm处的吸收峰为F聚心吸收,520nm处的吸收峰为V-心吸收,而660nm处的吸收峰则可能为与填隙原子相关的吸收。这是在冲击压缩条件下,首次实时观测到的MgO单晶样品冲击塑性变形产生的点缺陷色心吸收现象。  相似文献   

9.
双屈服法测定93W合金的屈服强度   总被引:3,自引:0,他引:3       下载免费PDF全文
 用组合飞片技术以实现对待测材料93W合金进行加载-再加载和加载-卸载,并用VISAR(Velocity Interferometer System for Any Reflector)测试方法和高速数值示波器记录样品-窗口界面的粒子速度,通过上下屈服面法对实验数据进行处理,从而推出93W在冲击压力分别为16、32和96 GPa三个压力点下的屈服强度为:1.8、2.6和4.9 GPa。得到了93W合金在高压下材料屈服强度随冲击压力的增大而增大,但其与冲击压力的比值则随冲击压力的增加而减小的变化规律。  相似文献   

10.
从连续介质力学理论看,当材料发生屈服后处于上屈服面,对处于上屈服面的材料进行再加载,将沿着上屈服面,依然发生塑性流动,不可能存在弹性响应。Asay则认为冲击压缩后的材料并非处于上屈服面,由此对处于冲击压缩态的材料进行卸载或再加载,可以观测到弹-塑性转变。国内部分人认为,实验观测到的弹性响应可能是LiF窗口(其冲击阻抗低于Al或其他高阻抗样品的冲击阻抗)反射的稀疏波所致。为了澄清对上述问题的观点,通过低阻抗样品的冲击实验,在消除冲击波在样品/窗口界面反射的稀疏波干扰的情况下,  相似文献   

11.
 通过改变样品厚度,对平面冲击加载下20钢的弹性前驱波的波幅衰减和应力松弛进行了实验研究。采用激光速度干涉测速仪(VISAR)实测了样品后自由面速度历史,采样频率达到1 ns,保证了实验结果的准确性。实验结果显示:Hugoniot弹性极限随着传播距离呈指数衰减,在所研究的样品厚度范围内,Hugoniot弹性极限减小了44%;应力松弛行为和弹性前驱波的上升沿时间也依赖于传播距离;冲击加载的强度对材料动态屈服行为的影响很小。  相似文献   

12.
冲击作用下材料的动态力学行为是工程力学、材料、武器物理和空间物理中的重要课题,其位错的产生和演化、绝热剪切带的形成、界面的冲击熔化和微层裂等,是我们研究的热点。以上材料的动力学效应,大都发源于原子尺度的微观缺陷,跨越了多个空间尺度和时间尺度,最后发展为宏观损伤效应。迄今为止,损伤形核、长大和汇合、界面的冲击熔化等效应的理论研究仍然存在许多空白。受限于现有实验技术,损伤从微观、细观至宏观尺寸的成核和演化等诸多中间环节均没有原位实验观测,这给加载过程中材料的动力学响应分析带来很大困难。因此,数值模拟研究材料微损伤演化是理解冲击作用下材料动力学行为的有效途径之一。  相似文献   

13.
张朝辉  王贵林  章征伟  郭帆  计策  傅贞  李勇 《强激光与粒子束》2021,33(4):045001-1-045001-9
磁驱动准等熵加载技术通过电流产生的磁压力加载材料,加载路径由负载电流波形和负载结构决定。作为应变率介于静高压加载和冲击加载之间的新型实验技术,熵增小、温升低。10 MA装置是典型的多支路汇流装置,包括24个电流支路,可在较大范围内控制负载电流波形,实现mm厚、cm直径样品在不同应变率下的准等熵加载。基于10 MA装置,通过调节负载电流波形实现样品加载路径控制,在一定压力-应变率范围,开展金属钽的强度实验研究,获取了不同厚度金属钽样品的加-卸载波剖面速度历史,分析获得了钽在系列峰值压力下的强度数据,比较了多个加载平台不同加载路径下的强度数据,实验结果与美国圣地亚国家实验室的磁驱动准等熵结果接近(平均应变率都约为105 s?1),明显高于冲击加载的流动强度,低于准静态加载获取的流动强度,与应变率增高强度会有所下降的理论预测一致。基于多支路汇流装置,未来将可开展更为丰富的材料动力学特性实验研究。  相似文献   

14.
通过二维弹塑性流体力学欧拉程序MEPH,系统研究冲击压力及加载速率对沟槽微射流喷射量的影响.计算结果显示,微射流的喷射量随冲击压力的增大而增大,但喷射量对压力的变化并不敏感;计算结果和实验结果均表明,加载速率对沟槽微射流的喷射量有较大影响,随着加载速率的减小,微粒子喷射量大致按指数规律减少,所得数值计算结果得到实验验证.  相似文献   

15.
在团簇多重标号技术基础上,提出了团簇探测的新算法,并以此作为大尺度二维和三维分子动力学模拟冲击加载金属材料微喷射粒子团簇分析的子程序.以二维为例描述了算法的逻辑结构,测试分析了算法的运行效率,并将其应用到二维分子动力学模拟冲击加载金属Cu和Al微喷射粒子的团簇统计分析中,对微喷射粒子团簇尺寸分布得到一些规律性认识.  相似文献   

16.
采用VISAR测量样品自由面速度剖面和回收样品观测分析联合技术,开展等厚对称碰撞实验,结合文献中的实验结果,研究了冲击加载压力大于纯铁材料冲击相变阈值约2~5 GPa和大于冲击相变阈值约10 GPa两种压力状态下纯铁材料的加卸载历程及各相区的变化,并从应力波相互作用的角度,指出了冲击加载压力略大于纯铁材料相变阈值约2 GPa时,等厚对称碰撞样品"反常"二次层裂与冲击相变及逆相变的关联机制。  相似文献   

17.
采用LS-DYNA瞬态动力学有限元程序,对平板撞击加载下含初始杂质的纯铝样品中微孔洞的成核与长大进行了数值模拟。结果表明:微孔洞首先在杂质与基体的边界处成核,随后在局部严重塑性变形驱动下快速线性增长;微孔洞半径的增长速率与冲击加载强度两者之间近似成线性关系;材料屈服强度和初始杂质的大小对微孔洞相对的增长速率有明显的影响;当微孔洞长大阈值取屈服强度的3.5倍时,数值仿真结果与理论分析结果基本一致,这有助于进一步认识孔洞长大的动力学行为。  相似文献   

18.
单晶铜在动态加载下空洞增长的分子动力学研究   总被引:7,自引:0,他引:7       下载免费PDF全文
冲击载荷下延性材料的损伤是材料中微空洞的产生和长大演化的结果.利用分子动力学模拟 方法对延性金属单晶铜中单个空洞在动态加载下的演化发展进行了研究,得到了空洞增长过 程中的应力分布及空洞增长演化随冲击强度变化的规律.模拟结果表明,动态加载下的前期 压缩过程对后期拉伸应力场作用下的空洞增长演化特征有不可忽视的影响,微空洞增长的阈 值则与单晶实验中层裂强度随拉伸应力作用时间减少而增加的趋势相一致. 关键词: 层裂 分子动力学 动态加载 空洞  相似文献   

19.
陈军  徐云  陈栋泉  孙锦山 《物理学报》2008,57(10):6437-6443
本文利用多尺度方法研究了包含孔洞金属材料在冲击加载条件下的动力学行为. 该多尺度方法结合了分子动力学和有限元方法,分子动力学方法运用于局部缺陷区域,而有限元方法运用于整个模型区域,两种方法之间使用桥尺度函数进行连接. 计算结果既包括了系统宏观的物理信息,如应变场、应力场、温度场等,也得到了微观原子的物理信息,如原子能量和位置坐标等. 结合以上的模拟结果,发现孔洞的坍塌与材料屈服强度和冲击强度有关,而孔洞坍塌和坍塌过程中对微喷射原子的压缩过程是形成局部热点的主要原因. 同时也发现孔洞坍塌形成的位错和局部热点可以导致局部绝热剪切带更容易形成. 关键词: 微孔洞 热点 冲击加载 多尺度方法  相似文献   

20.
对两种表面粗糙度的金属锡样品开展了一维平面冲击微层裂实验,采用自行研发的多点动量测试装置获取熔化金属破碎区粒子动量的时空分布信息。测试结果表明,对于百纳米级粗糙度精磨样品,在加载稀疏波的作用下,熔化金属出现典型的分层断裂现象。应用光滑粒子流体动力学方法与Autodyn程序,开展了金属锡微层裂过程的细观尺度模拟,研究自由面稀疏波沿样品厚度方向传播时界面不稳定性增长的特征。研究发现,微米尺度的表面粗糙度足以使扰动伴随反射稀疏波的传播而充分增长,卸载区熔化金属充分破碎,破碎粒子同时具有冲击方向和径向的分散性,与实验测试结果相符合。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号