首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We use action spectra published by the International Commission on Illumination to examine diurnal, seasonal and latitudinal variations in erythemally weighted (sunburning) UV-a health risk, and vitamin D-weighted UV-a health benefit. Vitamin D-weighted UV is more strongly dependent on ozone and solar zenith angle. Consequently, its diurnal, seasonal and geographic variability is more pronounced than for erythemally weighted UV. We then investigate relationships between the two quantities. An algorithm is developed and used to relate vitamin D production to the widely used UV index, to help the public to optimize their exposure to UV radiation. In the summer at noon, there should at mid-latitudes be sufficient UV to photosynthesize optimal vitamin D in approximately 1 min for full body exposure, whereas skin damage occurs after approximately 15 min. Further, while it should be possible to photosynthesize vitamin D in the winter at mid-latitudes, the amount of skin that must be exposed is larger than from the hands and face alone. This raises the question of whether the action spectrum for vitamin D production is correct, since studies have reported that production of vitamin D is not possible in the winter at mid-latitudes.  相似文献   

2.
Most solar UV measurements are relative to the horizontal plane. However, problems arise when one uses those UV measurements to perform risk or benefit assessments because they do not yield the actual doses people get while they are outdoors. To better estimate the UV doses people actually get while outdoors, scientists need geometric conversion factors (GCF) that change horizontal plane irradiances to average irradiances on the human body. Here we describe a simple geometric method that changes unweighted, erythemally weighted and previtamin D3-weighted UV irradiances on the horizontal plane to full cylinder and semicylinder irradiances. Scientists can use the full cylinder model to represent the complete human body, while they can use the semicylinder model to represent the face, shoulders, tops of hands and feet. We present daily, monthly and seasonally calculated averages of the GCF for these cylinder models every 5° from 20 to 70°N so that scientists can now get realistic UV doses for people who are outdoors doing a variety of different activities. The GCF show that people actually get less than half their annual erythemally weighted, and consequently half their previtamin D3-weighted, UV doses relative to the horizontal plane. Thus, scientists can now perform realistic UV risk and benefit assessments.  相似文献   

3.
The design and potential benefit of a solar ultraviolet (UV) radiometer reporting a maximum instantaneous flux of erythemally weighted heterogeneous energy is considered. The proposed device is electronically peak detecting; the user would ideally 'point and paint' the sun to find a localized maximum. A projected exposure time can be calculated from an instantaneous reading of erythemally weighted flux for a given minimal erythemal dose (MED) specified by the user. This calculation, though not necessarily providing a true exposure time, may be useful and informative in that it serves as a more 'recognizable' measure of erythemal flux and introduces a custom scale for each individual via their MED. Erythemal flux is calculated as the weighted integral sum [symbol: see text]j(lambda,t) epsilon(lambda) d lambda, where j (lambda, t) is the instantaneous angular integrated spectral irradiance accepted by human skin. This instrument proposal uses a single interference filter over a Pt-CdS photodiode; the interference filter is offered as a nominal design transmittance. The simulated response of the selective photodiode has a near-linear relation to the effective irradiance. Test inputs for evaluation purposes and to elucidate a transducer response are constructed from a spline interpolation of the World Radiation Center (WRC) spectrum and classic transmittance models. Our desired erythemal flux is offered in interconvertible UV Indexes (UVIs) as a function of zenith angle and atmosphere, characterized by elevation, ozone path, and turbidity.  相似文献   

4.
UV radiation contains erythemally weighted UV, as well as UV that synthesizes vitamin D3. Here, we attempted to determine the relationship between these factors by numerical simulation of atmospheric parameters, such as total ozone, using a simplified “SMART2” model for radiative transfer. Both forms of UV were almost linearly correlated with each other for a comparably large UV radiation exposure, larger than UV Index ~1.6. If erythemally weighted UV, which carries a risk of sunburn, is known, the amount of UV exposure needed for vitamin D synthesis in the epidermis can be estimated using this relationship. The production of 10 μg (400 IU) of vitamin D per day takes approximately 1/3 of the time needed to reach the minimal erythemal dose (MED) for an effective skin area of 600 cm2 for skin phototype III. For an area of 1200 cm2, 1/6 of that exposure time suffices. From a UV Index that is commonly used, the risks and benefits can be evaluated using this linear relationship, which will enable people to effectively manage their UV exposure and consider the risks and benefits to optimize health outcomes.  相似文献   

5.
The literature reports strong correlations between UV exposure and latitude gradients of diseases. Evidence is emerging about the protective effects of UV exposure for cancer (breast, colo-rectal, prostate), autoimmune diseases (multiple sclerosis, type II diabetes) and even mental disorders, such as schizophrenia. For the first time, the available levels of vitamin D producing UV or "vitamin D UV" (determined from the previtamin D action spectrum) and erythemal (sunburning) UV from throughout the USA are measured and compared, using measurements from seven locations in the USA are measured and compared, using measurements from seven locations in the US EPA's high accuracy Brewer Spectrophotometer network. The data contest longstanding beliefs on the location-dependence and latitude gradients of vitamin D UV. During eight months of the year centered around summer (March-October), for all sites (from 18 degrees N to 44 degrees N latitude) the level of vitamin D UV relative to erythemal UV was equal (within the 95% confidence interval of the mean level). Therefore, there was no measured latitude gradient of vitamin D UV during the majority of the year across the USA. During the four cooler months (November-February), latitude strongly determines vitamin D UV. As latitude increases, the amount of vitamin D UV decreases dramatically, which may inhibit vitamin D synthesis in humans. Therefore, a larger dose of UV relative to erythemal UV is required to produce the same amount of vitamin D in a high latitude location. However, the data shows that at lower latitude locations (<25 degrees N), wintertime vitamin D UV levels are equal to summertime levels, and the message of increasing UV exposure during winter is irrelevant and may lead to excessive exposure. All results were confirmed by computer modeling, which was also used to generalize the conclusions for latitudes from 0 degrees to 70 degrees N. The results of this paper will impact on research into latitudinal gradients of diseases. In particular, it may no longer be correct to assume vitamin D levels in populations follow significant latitude gradients for a large proportion of the year.  相似文献   

6.
While erythemal irradiance as a potentially damaging effect to the skin has been extensively studied and short-term forecasts have been issued to the public to reduce detrimental immediate and long-term effects such as sunburn and skin cancer by overexposure, beneficial effects to human health such as vitamin D(3) production by UV radiation and melatonin suppression by blue visible light have attained more and more attention, though both of them have not become part of forecasting yet. Using 4years of solar radiation data measured at the mid-latitude site Lindenberg (52°N), and forecast daily maximum UV index values, an overall good correspondence has been found. The data base of solar UV radiation and illuminance has also been used to analyze effects of clouds and aerosols on the effective irradiance. Optically thick clouds can strongly modify the ratios between erythemal and vitamin D(3) effective irradiance such that direct radiative transfer modeling of the latter in future UV forecasts should be preferably used. If parameterizations of vitamin D(3) effective irradiance from erythemal irradiance are used instead, the optical cloud depth would have to be taken into account to avoid an overestimation of vitamin D(3) with parameterizations neglecting cloud optical depth. Particular emphasis for the beneficial effects has been laid in our study on low exposure. Daily doses of solar irradiation for both vitamin D(3) and melatonin suppression do not reach minimum threshold doses even with clear sky and unobstructed horizon during the winter months.  相似文献   

7.
The ultraviolet radiation (UVR) emitted by the Sun causes many effects on the biosphere. On human beings they vary from the benefit of vitamin D synthesis to the harm of skin cancer induction. The biological dose depends on the effect, the exposure time to the Sun and the amount of UVR received. In this work we show that the measured incidence of erythemal dose (ED) in Belo Horizonte (19.92 degrees S, 43.94 degrees W, 858 m a.s.l., Brazil) for a cloudless day can vary from 7503 to 2926 J m(-2) in the summer-winter seasonal variation. In addition, supposing a linear relationship between the ED and the geophysical parameters of solar zenith angle cosine (cos(SZA)), column ozone and reflectivity from the ozone monitoring instrument overpass measurements, a model for the forecast of UVR incidence on a monthly-based period is developed. From this an annual ED of 1,451,099 J m(-2) is obtained.  相似文献   

8.
Seafarers working on decks of vessels at low latitudes are exposed to extremely high solar UV radiation. Their risk of developing skin cancer may be enhanced. Solar erythemal UV irradiance and exposure were measured for the first time on merchant vessels going along typical international routes at low latitudes. The measurements taken at horizontal incidence on the observation deck, and on different parts of the seaman (head, shoulder, chest and back) doing typical outdoor work show the highest portion (40–80% of horizontal exposure) incident on the head. 2 years of measurements of solar UV and VIS/NIR irradiance taken on the mast top of the Research Vessel METEOR were added to the data base. Radiative transfer model calculations were performed along all the routes with satellite‐based input data of ozone and aerosol for clear sky health‐effective radiation including vitamin D3 (VD3). Measured data show extremely high noontime UV index values up to 19 with clear sky, and up to 22 due to cloud scattering. Eight hours erythemal exposure values are more than double of typical midlatitude summer values. Based on the results, an algorithm is presented to derive a seafarer's personal erythemal exposure according to his/her personal record of sea service.  相似文献   

9.
It is widely recognized that vitamin D deficiency has detrimental health consequences. The ultraviolet (UV) B radiation increases the serum vitamin D level, expressed by 25-hydroxyvitamin-D(3) [25(OH)D]. An analytical model is presented to calculate the serum 25(OH)D changes throughout a year, caused by the solar exposure variability due to geophysical and habitual factors. The model is tuned by taking into account recent experimental results of serum 25(OH)D changes, after a series of artificial (by fluorescent tubes) UV exposures. The model uses the erythemal and vitamin D weighted irradiances, inferred from the Brewer spectrophotometer and the Kipp and Zonen broad-band meter measurements, carried out in Belsk (52°N, 21°E), Poland, in 2010. The modeled seasonal pattern of the serum 25(OH)D concentration in Polish indoor workers is only slightly different, than in subjects with typical outdoor activity habits, and in those with sun-seeking behavior. A deep minimum in the serum 25(OH)D concentration appears in late winter, regardless of outdoor activity habits. An extra sunbathing to boost the vitamin D level is not worth taking, because of a minor improvement of the vitamin D status, and because of a greater erythema risk. It would be much safer and more effective to maintain an adequate vitamin D level through diet supplements, even in summer, for non sun-seeking subjects.  相似文献   

10.
The standard erythema action spectrum provides an internationally accepted representation of the erythema-inducing effectiveness of wavelengths in the UV part of the spectrum. The action spectrum forms the basis of the UV index used for public health information, defines the standard erythema dose unit and the minimum erythema dose and is the default response spectrum aspired to by a range of UV radiometer manufacturers. However, there are several versions of this erythema action spectrum in use, and only one of them has been endorsed as a standard. While the differences in erythemally weighted radiation incurred by choice of action spectrum will be no more than a few percent, this uncertainty is unnecessary. Here we detail the differences in the different versions of erythema action spectra, illustrate the resulting effects in quantifying UV doses and encourage readers to use only the standard version of the action spectrum in the future.  相似文献   

11.
Global irradiances measured in seven 5-nm bands of UV-B at Rockville, MD (39.1 degrees N, 77.1 degrees W) on 28 clear days near the summer solstice are convoluted with the erythemal action spectrum of human skin to determine dose rates at various hours of the day. These rates are averaged with respect to solar zenith angle to obtain the diurnal variation of mean dose rate and of the Sun Protection Factor (SPF) of the atmosphere (reciprocal of the normalized atmospheric transmissivity) on a typical clear summer day in Rockville. At a 45 degrees zenith angle the atmospheric SPF is computed to be 2.7 and increases rapidly to greater than 7 at 60 degrees. Dose rates are integrated with respect to time to obtain estimates of mean doses for various periods during clear days at Rockville in mid summer and near the autumnal equinox. In mid summer the effective erythemal UV-B exposure during the period when the solar zenith angle is less than 45 degrees is about five times greater than that during the remainder of the day. These observations provide scientific basis for a shadow rule for solar UV-B protection: when shadows are shorter than objects casting them, sunburn is much more likely than at other times.  相似文献   

12.
The long-term data base on atmospheric ozone combined with a set of radiative transfer calculations provides estimates of the variability in ultraviolet (UV) sunlight that should have occurred over the period1957–1988 under clear, pollution-free skies. Results refer to the earth's surface at specific locations in the Northern Hemisphere and to averages over collections of sites located in three latitude bands from 30 to 64°N. For any one year the annually integrated solar irradiance, weighted by the action spectrum for erythema, typically lies within3–4% of the 32-year mean. No statistically significant trends span the entire 32-year time frame. However, over the shorter time period1970–1988 the annually integrated erythemal irradiance shows an upward trend of +2.1 ± 1.2% per decade based on all ozone data at latitudes from 40 to 52°N. No trends exist in lower (30-39°N) and higher (53-64°N) latitude bands. We caution that a trend line provides a very simple index of the variability in UV sunlight, and these results should not necessarily be extrapolated into the future.  相似文献   

13.
A worldwide forecast of the erythemally effective ultraviolet (UV) radiation is presented. The forecast was established to inform the public about the expected amount of erythemally effective UV radiation for the next day. Besides the irradiance, the daily dose is forecasted to enable people to choose the appropriate sun protection tools. Following the UV Index as the measure of global erythemally effective irradiance, the daily dose is expressed in units of UV Index hours. In this study, we have validated the model and the forecast against measurements from broadband UV radiometers of the Robertson-Berger type. The measurements were made at four continents ranging from the northern polar circle (67.4 degrees N) to the Antarctic coast (61.1 degrees S). As additional quality criteria the frequency of underestimation was taken into account because the forecast is a tool of radiation protection and made to avoid overexposure. A value closer than one minimal erythemal dose for the most sensitive skin type 1 to the observed value was counted as hit and greater deviations as underestimation or overestimation. The Austrian forecast model underestimates the daily dose in 3.7% of all cases, whereas 1.7% results from the model and 2.0% from the assumed total ozone content. The hit rate could be found in the order of 40%.  相似文献   

14.
An analysis is made of experimental ultraviolet erythemal solar radiation data measured during the years 2000 and 2001 by the Spanish UV-B radiation evaluation and prediction network. This network consists of 16 Robertson-Berger type pyranometers for evaluating solar erythemal radiation and five Brewer spectroradiometers for evaluating the stratospheric ozone. On the basis of these data the Ultraviolet Index (UVI) was evaluated for the measuring stations that are located either in coastal regions or in the more densely populated regions inland on the Iberian Peninsula. It has been checked that in most cases the maximum irradiance values corresponded to solar noon, although there were exceptions that could be explained by cloudiness. The maximum experimental values of the UVI were around 9 during the summer, though frequently passing this value at the inland measurement stations. The annual accumulated dose of irradiation on a horizontal plane has also been studied, as well as the evolution through the year in units of energy, standard erythemal doses and minimum erythemal doses, according to different phototypes.  相似文献   

15.
The European Light Dosimeter Network (ELDONET) has now been functional for more than four years. The network is based on dosimeters which measure radiation in three biologically relevant wavelength bands (UV-B, 280-315 nm; UV-A, 315-400 nm; and Photosynthetic Active Radiation, PAR, 400-700 nm). The ELDONET network is currently based on 33 stations with 40 instruments. The distribution of the instruments all over Europe allows measurement of the latitudinal and longitudinal light climate distribution. In addition, several instruments are active in South America, New Zealand, India, Africa and Japan. With some exceptions, the measured yearly doses depend on the latitude. While the maximal daily doses are almost comparable from station to station, seasonal changes and the different maximal solar zenith angles account for the differences in total yearly doses. Ratioing between UV-B and PAR allows the detection of subtle changes in the local light climate, due, for example, to mini-ozone holes encountered in northern Europe during spring. Comparison of satellite ozone data with terrestrial ELDONET measurements revealed an overall weak correlation between these data sets. However, local weather conditions, solar zenith angle and latitude as well as reflectivity (i.e. clouds and aerosol; satellite data) show a much stronger correlation to the doses received. The close relationship between the spectral sensitivity of the UV-B sensor used in the ELDONET dosimeter and the CIE erythemal action spectrum allows determination of the erythemal dose on the basis of the dosimeter readings.  相似文献   

16.
Sheets of polysulphone film have been extensively used as detectors to monitor solar UVB radiation. The advantages of polysulphone detectors are that they are small in size, they have good thermal stability and they are sensitive to UVB radiation. The principal disadvantage of polysulphone detectors is that their spectral sensitivity includes part of the short-wavelength UVA. In this study, we investigate the spectral sensitivity of the polysulphone detector with a series of monochromatic (+/- 2 nm) excitations. We then compare the polysulphone-effective solar radiation with the erythemally effective solar radiation by comparing solar UVB data obtained with polysulphone films with those obtained with a spectroradiometer. From polysulphone data on the seasonal variation of solar UVB radiation, we estimate the corresponding fluctuations of the absorption of the ozone layer. We show that the spectral sensitivity of the polysulphone film is closer to the erythema action spectrum than that indicated by earlier data and that polysulphone detectors can be used to predict the erythema risk of solar UVB. Measurements on solar UVB with polysulphone films and with a spectroradiometer were found to be strongly correlated (R2 > 0.95). Finally, polysulphone-based measurements provide a good measure of the fluctuations of the stratospheric ozone layer.  相似文献   

17.
We are assured by responsible scientific and governmental organizations that sunscreens should be routinely worn to reduce skin cancer risk. We are also advised that wearing sunscreens will not hinder our ability to produce sufficient previtamin D3 (preD3) from casual sunlight exposure. We report the examination of a series of 166 solar spectra, obtained on different days throughout a year, evaluated for erythemic and preD3 effectiveness and the relative effects of recommended Sun protection factor (SPF) 15 sunscreen. The results show that the sunscreen is much more effective in blocking the formation of preD3, than its labeled SPF for preventing sunburn. In fact with sunscreen applied only miniscule amounts of preD3 are predicted to be made outdoors even with extensive exposure. This raises important questions regarding the safest way to use sunlight exposure to promote healthy vitamin D3 levels and suggests the need to modify the public safety "Safe Sun" messages.  相似文献   

18.
Abstract This study compared how well minimal erythema doses predicted using the reference action spectrum for UV erythema proposed by the International Commission on Illumination (CIE) in 1987 agreed with those observed in phototesting a large number of subjects with normal responses to sunlight to six different wavelengths of UV radiation (UVR) between 300 and 400 nm. It was found that, within the limits of experimental error, the hypothesis that the CIE reference action spectrum is a valid predictor of the erythemal effectiveness of different wavelengths of UVR could not be dismissed. There is no strong reason, therefore, why the CIE action spectrum should not continue to be used as a reference to compare the erythemal effectivenesses of different broadband sources. However, close examination of the residuals from the regression analysis suggested that the erythemal sensitivity of skin at longer UV wavelengths (>350 nm) in the population studied here is greater than predicted from the CIE reference action spectrum.  相似文献   

19.
Biological action spectra are commonly used to assess health and ecosystem responses to increases in spectral ultraviolet (UV) irradiances resulting from stratospheric ozone (O3) reductions. For each action spectrum, a normalized sensitivity coefficient (the radiation amplification factor [RAF]) can be calculated as the relative increase in biologically active UV irradiance for a given relative decrease in the atmospheric O3 column amount. We use a detailed radiative transfer model to calculate the dependence of RAF on the O3 column amount and the solar zenith angle (and, therefore, implicitly on latitude and season) for several commonly used action spectra. A simple analytical model is used to interpret the results in terms of the semilogarithmic slope of the action spectra in the UV-B and UV-A wavelength ranges. We also show that RAF may be overestimated substantially if the UV-A portion of an action spectrum is significant but is neglected. This is illustrated using several idealized action spectra as well as published action spectra for plant responses to UV irradiation. Generally, if the portion of an action spectrum measured longward of approximately 300 nm spans less than about two orders in magnitude in its sensitivity, significant errors in the estimated RAF may ensue, and the use of this action spectrum in O3-related studies can be compromised.  相似文献   

20.
We have previously shown that keratinocytes in vitro can convert biologically inactive vitamin D3 to the hormone calcitriol. The present study was initiated to test whether ultraviolet B (UVB)-induced photolysis of provitamin D3 (7-dehydrocholesterol, [7-DHC]) which results in the formation of vitamin D3 also leads to the generation of calcitriol in keratinocytes. Submerged monolayers of HaCaT keratinocytes were preincubated with 7-DHC (25 microM) at 37 degrees C and irradiated with monochromatic UVB at different wavelengths (effective UV-doses: 7.5-60 mJ/cm2), or a narrow-band fluorescent lamp Philips TL-01 (UVB-doses: 125-1500 mJ/cm2). Irradiation with both sources of UVB resulted in the generation of different amounts of previtamin D3 in our in vitro model followed by time-dependent isomerization to vitamin D3 and consecutive formation of calcitriol in the picomolar range. Unirradiated cultures or cultures exposed to wavelengths > 315 nm generated no or only trace amounts of calcitriol. The conversion of vitamin D3 generated after UVB irradiation to calcitriol is inhibited by ketoconazole indicating the involvement of P450 mixed function oxidases in this chemical reaction. The generation of calcitriol was wavelength- and UVB dose dependent and reached approximately 18-fold higher levels after irradiation at 297 nm than at 310 nm (effective UVB dose: 30 mJ/cm2). Hence, keratinocytes may be a potential source of biologically active calcitriol within epidermis, when irradiated with therapeutical doses of UVB.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号