首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 187 毫秒
1.
通过优化色谱条件,建立专属性良好的高效液相色谱测定多种布洛芬药物制剂中布洛芬含量。采用Dikma Silversil C18键合硅胶色谱柱(250 mm×4.6 mm,5μm)为分析柱,柱温为30℃,以乙腈-磷酸溶液(体积比为80∶20)作为流动相,流量为1.0 mL/min,进样体积为10μL,以光电二极管阵列检测器检测,检测波长为263 nm。采用色谱峰面积外标法测定布洛芬缓释胶囊、原料药和颗粒剂中布洛芬的含量。布洛芬质量浓度在0.091 6~1.099mg/mL范围内与色谱峰面积线性关系良好,相关系数为0.999 7,检出限为3.68μg/mL。布洛芬缓释胶囊、原料药和颗粒剂的样品加标平均回收率分别为99.73%~102.00%、99.45%和101.80%,测定结果的相对标准偏差分别为0.27%~1.18%、1.97%和1.99%(n=6)。优化后的高效液相色谱法准确可靠,适用于多种布洛芬药物制剂中布洛芬的含量测定,可以为多种布洛芬药物制剂的质量评价和质量控制提供参考和方法选择依据。  相似文献   

2.
采用胶束液相色谱法分离和测定制剂和尿样中布洛芬,考察了表面活性剂的种类及浓度、柱温、流动相pH值,流速对布洛芬色谱保留行为的影响,探讨并提出了布洛芬在吐温-80为非离子表面活性剂的胶束液相色谱中的色谱保留模型。以ZORBAXExtend-C18色谱柱(4.6mm×250mm,5μm),20mmol.L-1吐温-80和25mmol.L-1磷酸氢二钾(pH7.8)混合溶液为流动相,在263nm处进行测定,布洛芬的保留时间为5.8min。布洛芬的质量浓度在0.2~1.0g.L-1范围内呈线性关系,检出限(3S/N)为1.1ng,平均回收率达98.3%~102.1%。  相似文献   

3.
建立了微流控芯片非接触电导检测快速测定精氨酸布洛芬含量的方法。考察了缓冲液种类和浓度、添加剂、分离电压以及进样时间等因素对分离检测的影响。优化条件为:20 mmol/L Tris-20 mmol/L H3BO3(p H 8.6)为缓冲溶液、不加添加剂、分离电压2.0 k V、进样时间10.0 s,在45.0 s内可实现精氨酸布洛芬的快速分离测定。结果表明,布洛芬和精氨酸在80.0~1.00×103mg/L范围内线性关系良好,相关系数(r)分别为0.998和0.997,检出限(S/N=3)为60 mg/L,相对标准偏差分别为1.9%和1.8%,加标回收率分别为97.9%~103%和97.3%~102%。该方法快速、简便,为精氨酸布洛芬非甾体抗炎药物的分析和质量控制提供了一种新方法。  相似文献   

4.
建立了一种同时检测中药材中齐墩果酸(OA)和熊果酸(UA)含量的超高效液相色谱串联质谱方法。采用超高效液相色谱-三级四极杆质谱(UPLC-TQMS)法对样品进行测定,Waters Acquity UPLC BEH C_(18)色谱柱(50 mm×2.1 mm,1.7μm)进行分离,以乙腈-5 mmol/L乙酸铵水溶液(氨水调至pH 9.24)为流动相,梯度洗脱;负离子模式下检测。结果表明,齐墩果酸和熊果酸在0.5~50.0 ng/mL浓度范围内线性关系良好,相关系数(r~2)分别为0.999 8和0.999 7;检出限(S/N=3)分别为0.006 6,0.012 8 ng/mL,定量下限(S/N=10)分别为0.002 0,0.003 8 ng/mL;对OA和UA进行加标回收实验,平均回收率分别为101.1%和100.8%,相对标准偏差(RSD,n=9)分别为1.8%和0.04%。对10种不同中药材中齐墩果酸和熊果酸含量进行检测,结果表明该方法快速简便、准确度高、重现性好,可用于含有齐墩果酸和熊果酸的中药材含量测定。  相似文献   

5.
向瑾  余勤  梁茂植  秦永平  南峰 《分析化学》2008,36(3):311-315
建立了柱切换高效液相色谱法测定人血浆中布洛芬对映体浓度的方法。以对溴苯甲酸为内标,样品经醋酸钠缓冲液酸化后,用V(正己烷)∶V(异丙醇)=95∶5萃取。以Chiralcel OJ-H柱(Daicel Chemicals,250mm×4.6mm,5μm)为分析柱,UltimateTM SiO柱(50mm×4.6mm,5μm)为预处理柱;流动相为V(正己烷)∶V(异丙醇)∶V(三氟醋酸)=96.5∶3.5∶0.1,流速为0.5mL/min;预处理流动相为V(正己烷)∶V(异丙醇)=99.5∶1,流速为1mL/min;柱切换时间为1.70~4.09min;紫外检测波长为230nm。布洛芬消旋体和S-( )-布洛芬标准曲线线性范围分别为0.21~20mg/L和0.10~10mg/L;日内RSD小于6.5%,日间RSD小于6.1%;方法回收率为93.3%~107.1%,萃取回收率为80.0%~86.6%。本法简便、准确,重现性好,可用于布洛芬对映体人体药代动力学研究。  相似文献   

6.
HPLC法同时测定石蒜中加兰他敏和石蒜碱   总被引:3,自引:0,他引:3  
李霞  熊海蓉  蒋利华  文祝友  熊远福 《应用化学》2010,27(11):1362-1364
建立了高效液相色谱同时测定石蒜中加兰他敏和石蒜碱含量的方法。 采用phenomenex-C18色谱柱,以乙腈(A)-0.1%TFA水溶液(B)为流动相梯度洗脱,检测波长289 nm。 结果表明,加兰他敏和石蒜碱均在0.5~10 mg/L(r=0.9999)呈现良好的线性关系,最低检测限(S/N=3)分别为0.09和0.15 mg/L,平均加样回收率分别为99.53%和96.82%。 该方法简单、快速、准确,适合于石蒜中加兰他敏和石蒜碱的测定。  相似文献   

7.
建立了超高效液相色谱-串联质谱法(UPLC-MS/MS)定量检测人体内叶酸6种主要代谢产物的方法。采用BEH C18色谱柱(2.1×50 mm,1.7μm),以甲酸-乙腈为流动相,流速为0.4 m L/min,进样体积5μL,梯度洗脱法进行分离,电喷雾正离子模式下以多反应检测(MRM)方式检测,外标法定量。6种叶酸代谢产物检出限(S/N=3)和定量限(S/N=10)分别为0.05~0.20 ng/m L和0.15~0.50 ng/m L,6种代谢产物(叶酸、5-甲基四氢叶酸(5-Me THF)、5-甲酰四氢叶酸(5-Fo THF)、同型半胱氨酸(Hcy)、S-腺苷甲硫氨酸(SAM)和S-腺苷高半胱氨酸(SAH))分别在一定范围内呈线性相关,相关系数R2≥0.998;在血清样品中加标回收率为90.1%~105.3%,日内和日间RSD均小于6%。  相似文献   

8.
建立了同时测定血浆中吲哚美辛和布洛芬两种非甾体抗炎药的HPLC测定方法。样品采用乙腈沉淀蛋白提取后离心,上清液用氮气吹干流动相复溶,以乙腈:20 mmol/L乙酸铵水溶液(甲酸调节p H为3.5)=85:15(V/V)进行洗脱,在ZORBAX SB-C18(4.6 mm×250 mm,5μm)色谱柱上分离,流速为1 m L/min,检测波长220 nm,采用内标法定量,吲哚美辛和布洛芬互为内标。结果表明吲哚美辛和布洛芬在0.1~50μg/m L范围内呈良好的线性关系,吲哚美辛和布洛芬的检出限(S/N=3)分别为1.3 ng和2.0 ng。回收率在86.3%~102.0%之间,日内精密度RSD3.4%。经方法学验证,该方法适用于血浆样品中吲哚美辛和布洛芬的测定,且方法专属性好、简便快捷。  相似文献   

9.
高效液相色谱法测定大气颗粒物中的杂环胺   总被引:2,自引:0,他引:2  
建立了大气颗粒物中杂环胺的高效液相色谱检测方法.采用ODS C18色谱柱(250 mm×4.6 mm, 5 μm),乙腈-0.01 mol/L三乙胺缓冲溶液(pH 4.0 )为流动相,非线性梯度洗脱,流速1.0 mL/min,柱温30 ℃,紫外检测波长263 nm,并优化荧光激发和发射波长条件,实现了6种杂环胺的基线分离和4种杂环胺的高灵敏度荧光检测.本方法中荧光和紫外检测器的检出限分别为0.0018~0.0084 mg/L和0.093~0.609 mg/L(S/N=3),相关系数在0.9920~0.9999之间,RSD小于5.9%,平均回收率为75.3%~111.6%,回收率相对标准偏差为1.7%~2.3%,具有较高的精确度和准确度.  相似文献   

10.
高效液相色谱法测定茶叶中的茶氨酸   总被引:12,自引:0,他引:12  
朱小兰  陈波  罗旭彪  姚守拙 《色谱》2003,21(4):400-402
建立了未衍生化高效液相色谱法(HPLC)测定茶叶中茶氨酸含量的方法。采用的色谱条件为:C 18 色谱柱,以0.05%(体积分数)三氟乙酸水溶液为流动相,流速1 mL/min ,进样量10 μL,检测波长203 nm。茶氨酸质量浓度在0.02~1 g/L 内,其浓度与峰面积呈良好的线性关系,最低检出限为1.75 ng(S/N=3),回收率为97.2%,相对标准偏差(RSD)为1.7%。同时以高效液相色谱-电喷雾离子化质谱对所分离的茶氨酸进行了纯度鉴定。方法具有精确、灵敏、流动相组成简单等特点。  相似文献   

11.
Column-switching techniques for high-performance liquid chromatography of two acidic drugs, ibuprofen and mefenamic acid, in human serum with short-wavelength ultraviolet detection are described. The method involved extraction of the analyte from acidified serum followed by the chromatographic analysis using column switching. Three ODS columns were used each with different mobile phase, utilizing the difference of ion-pair formation or of ionization caused by pH change. The method offered high sensitivity and selectivity, with short-wavelength ultraviolet detection at 221 nm for ibuprofen and at 219 nm for mefenamic acid. The detection limits were 0.5 ng/ml (2.4 pmol/ml) for ibuprofen and 0.1 ng/ml (0.4 pmol/ml) for mefenamic acid using 1 ml of serum, both at a signal-to-noise ratio of 3. With some modifications, the principle of the method would be applicable to other acidic compounds in biological fluids.  相似文献   

12.
A simple, precise and rapid reversed-phase HPLC method was developed for the simultaneous estimation of acetaminophen, ibuprofen and chlorzoxazone in formulations. The method was carried out on a Kromasil® C8 column using a mixture of 0.2% triethylamine:acetonitrile (adjusted to pH 3.2 using dilute orthophosphoric acid), and detection was carried out at 215 nm using ketoprofen as internal standard. All these drugs showed linearity in the range of 2–10 μg ml−1, and limits of quantification was found to be 10, 50 and 20 ng ml−1 for acetaminophen, ibuprofen and chlorzoxazone, respectively.  相似文献   

13.
Paracetamol is a widely used drug for fever and pain relief. Ibuprofen is a common nonsteroidal anti‐inflammatory drug. In this study, a sensitive and accurate reversed phase high performance liquid chromatography method was developed for the simultaneous determination of ibuprofen and paracetamol. The chromatographic separation was achieved on a Phenomenex C18 (250 mm, 4.6 mm, 5 μm) column. Fifty milli molar phosphate buffer (pH 7.5) and methanol were used as mobile phase in a gradient elution mode. The retention times of paracetamol and ibuprofen were 5.7 and 10.4 min, respectively. The linearity of the developed method was established in the range of 0.25 – 250 mg/L with a correlation coefficient of 0.9998 for both analytes. The limit of detection/quantification values were found to be 0.06/0.19 and 0.08/0.26 mg/L for ibuprofen and paracetamol, respectively. The method was successfully applied in drug samples in the form of tablets and suspensions. The calculated concentrations matched with the claimed values on their prospectuses. The drug samples were studied under simulated gastric conditions to determine the behaviors of the analytes in the human body. The obtained results showed no change in the retention time of the analyte peak shapes throughout the 210 minutes.  相似文献   

14.
研究了用毛细管区带电泳法快速测定复方布洛芬片中布洛芬和伪麻黄碱含量的方法。在0.025mol/L的磷酸盐缓冲液(pH8.1)中,上述两组分可在3min内得以完全分离,用紫外检测器在210nm处检测,并以外标法定量。11次测定含有9.5mg/L盐酸伪麻黄碱和66.7mg/L布洛芬的试样溶液,相对标准偏差为2.9%(伪麻黄碱)和1.9%(布洛芬),回收率为103.1%(伪麻黄碱)和97.6%(布洛芬)。应用毛细管区带电泳法测定复方布洛芬片剂的含量,所得结果与HPLC法一致。  相似文献   

15.
Ibuprofen arginate is a rapidly absorbed salt designed to promote more rapid onset of analgesia than commercially available forms of ibuprofen. Ibuprofen and arginine have very different polarities and this becomes in a chromatographic problem, further complicated with the determination of related compounds, which is necessary in stability assays of the pharmaceutical forms. The common solution is the employment of two separate methods, but this is time consuming. A LC method has been developed to determinate both compounds and related impurities in one run. Ibuprofen, arginine and three ibuprofen related impurities (B, E and J) have been baseline separated with isocratic conditions at pH 3.0 and run time under 20 min by employing a tandem combination of two different stationary phases: first a ZORBAX SB-C18 column from Agilent (250 mm x 4.6 mm and 5 microm) and downstream a SUPELCOSIL LC-NH2 column from Supelco (150 mm x 4.6 mm and 3 microm). The octadecyldiisobutylsilane column provides the separation of ibuprofen and its impurities by a hydrophobic mechanism, whereas aminopropyl column offers selective retention of arginine by dipolar interaction mechanism. Method has been successfully validated following ICH guidelines and it has been demonstrated to be reliable for arginine, ibuprofen and related impurities determination in sachets of two different dosages as pharmaceutical forms. Moreover, stress test has proved the selectivity of the method for degradation products, such as those that can emerge throughout long-term stability assays.  相似文献   

16.
建立了一种利用反相高效液相色谱-电化学阵列检测器同时检测烟草中主要次生代谢产物的方法。在Hypersil BDS C-18(4.6 mm×200 mm)色谱柱上,以30 mmol/L磷酸二氢钠(pH 3.5)-5%~70%(体积分数)乙腈(含0.25 mmol/L十二烷基磺酸钠)进行梯度洗脱,流速为1 mL/min,柱温为30 ℃。电化学阵列检测器的检测电势依次为:-20,140,210,310,400,450,490,730,800,900 mV时,可以较好地分离和检测烟草中常见的次生代谢产物绿原酸、咖啡酸、对羟基肉桂酸、莨菪葶、芦丁和烟碱。该方法的相对标准偏差为0.71%~15.31%,回收率为52.0%~85.2%,各种次生代谢产物的检测限为0.2~2 ng;进样量在20~500 ng范围内呈现良好的线性关系,线性相关系数为0.9910~0.9998;具有较高的准确度和精确度。方法简便,可应用于烟草中次生代谢产物的检测。  相似文献   

17.
A novel application of whole cells of Nocardia corallina B-276 for the deracemisation of ibuprofen is reported. This microorganism successfully hydrolysed ibuprofen nitrile to ibuprofen amide, and ibuprofen amide to ibuprofen, using a suspension of cells in a potassium phosphate buffer solution (0.1 M, pH = 7.0). These results can be explained by the presence of NHase and amidase enzymes, but the reactions are not enantioselective and low ee values were obtained. However, (R)-ibuprofen was isolated with > 99% ee by a deracemisation process catalysed by N. corallina B-276. This is the first report of this kind of catalysis with this microorganism.  相似文献   

18.
建立了一种超高效合相色谱法( Ultra performance convergence chromatography,UPC2)分离和测定盐酸兰地洛尔中立体异构体的方法。本方法选用Daicel CHIRALPAK? IF手性色谱柱(150 mm ×4.6 mm,3μm),以CO2为流动相,甲醇-正丁醇-乙腈(1:1:1, V/V)+0.5%氨水为助溶剂,梯度洗脱,流速为2.8 mL/min,检测波长为223 nm。在建立的UPC2条件下,盐酸兰地洛尔的R,R-异构体、R,S-异构体和S,R-异构体的检出限分别为0.3、0.4和0.3 mg/L;线性范围分别为2~300 mg/L、5~300 mg/L和2~300 mg/L;加标回收率分别为103.4%,91.8%和101.7%;进样精密度分别为0.06%,0.09%和0.08%(n=6)。本方法能够满足盐酸兰地洛尔样品中3个立体异构体检查的相关要求。  相似文献   

19.
The pentafluorophenyl (PFP) column is emerging as a new advancement in separation science to analyze a wide range of analytes and, thus, its separation mechanism at supramolecular level is significant. We developed a mechanism for the separation of ibuprofen and omeprazole using different combinations (ranging from 50:50 to 60:40) of water–acetonitrile containing 0.1% formic acid as the mobile phase. The column used was Waters Acquity UPLC HSS PFP (75 × 2.1 mm, 1.8 μm). The reverse order of elution was observed in different combinations of the mobile phases. The docking study indicated hydrogen bonding between ibuprofen and PFP stationary phase (binding energy was −11.30 kJ/mol). Separation at PFP stationary phase is controlled by hydrogen bonding along with π–π interactions. This stationary phase may be used to analyze both aromatic and aliphatic analytes. The developed mechanism will be useful to separate various analytes by considering the possible interactions, leading to saving of energy, time and money. In addition, this work will be highly useful in preparative chromatography where separation is the major problem at a large scale. Moreover, the developed LC‐MS‐QTOF method may be used to analyze ibuprofen and omeprazole in an unknown sample owing to the low value of detection limits.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号