首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
NEWS     
《分析化学》2012,(10):1632-1633
离子迁移谱(IMS)基于不同结构和质量的离子在均匀电场中的飞行速度差异实现不同化合物的分离分析,常被用于同分异构体的分离检测。除了独立使用之外,也常与质谱联用,例如在生物样品分析时,离子迁移谱可以显著降低背景噪声、提高检测灵敏度;离子迁移谱还被用作色谱检测器,实现复杂样品(特别是同分异构体)的多维分离。然而,  相似文献   

2.
房康  郭项雨  王宏伟  熊行创  白桦  雷海民  马强 《色谱》2019,37(7):742-749
采用液相色谱-电喷雾电离-离子迁移谱联用技术,研究建立了中药口服液中丹参素、甘草酸、天麻素、绿原酸、葛根素、黄芩苷、芦丁等7种指标性成分的二维分离分析方法。样品溶液首先经ACQUITY UPLC BEH C18色谱柱(50 mm×1 mm,1.7 μm)分离后,导入可调节式分流器(分流比50 ∶ 1),柱后流出液分别进入离子迁移谱和三重四极杆质谱检测。分别详细优化了液相色谱、喷雾电压、迁移管和气体预加热温度、漂移气流速等实验条件,同时建立了指标性成分的液相色谱-三重四极杆质谱确证方法。7种中药指标性成分的检出限为2~10 μg/mL,定量限为5~25 μg/mL。采用本方法对中药口服液实际样品进行了检测分析。通过将液相色谱和离子迁移谱进行偶联,可实现目标化合物同时基于疏水性和离子迁移率差异的二维分离,获得更为丰富的测试信息。  相似文献   

3.
搭建了一套纳升级电喷雾-离子源离子迁移谱仪。首先,分别对尾吹气流速、溶剂流速等影响仪器去溶剂化效果的参数进行了研究和优化。在此基础上,用一系列胺类化合物对该仪器的去溶剂化效果、分辨能力以及灵敏度进行了表征。实验结果表明,该仪器能够对电喷雾离子液滴实现完全去溶剂化;三辛胺的检出限可以达到10 μg/L。最后,将该仪器用作高效液相色谱的检测器,在无需衍生化的条件下对胺类混合物样品进行检测。由三乙胺、二乙胺以及丁胺组成的混合样品被成功分离并测定。该系统对三乙胺、二乙胺以及丁胺的线性响应范围均达到近两个数量级。  相似文献   

4.
以2015版《化妆品安全技术规范》中规定的常见禁用及限用有毒挥发性有机溶剂为研究对象,建立了静态顶空/气相色谱-质谱法(SHS/GC-MS)同时测定化妆品中22种有毒挥发性有机溶剂(VOC)(二氯甲烷、顺式-1,2-二氯乙烯、反式-1,2-二氯乙烯、2-氯-1,3-丁二烯、三氯甲烷、1,2-二氯乙烷、苯、四氯化碳、三氯乙烯、甲苯、四氯乙烯、氯苯、乙苯、三溴甲烷、间二甲苯、对二甲苯、苯乙烯、邻二甲苯、异丙苯、1,4-二氯苯、1,2-二氯苯、六氯丁二烯)残留的检测方法。试样在80℃下30 min静态顶空,经DB-1柱分离后,采用选择离子监测模式(SIM)进行定性定量分析。优化了顶空、色谱和质谱参数,结果表明:22种VOC在0.5~50 ng/m L浓度范围内均呈良好的线性关系,相关系数均大于0.99,在1.0,2.0,5.0 ng/m L 3个浓度加标水平下的平均回收率为80.3%~102.7%,相对标准偏差(RSD,n=6)为6.4%~9.9%,检出限为0.2~5.0 ng/g。结果表明,该方法简便、灵敏、准确,具有良好的重现性和稳定性,适合于化妆品中22种VOC残留的筛查和确证检测。  相似文献   

5.
梁茜茜  陈创  王卫国  李海洋 《色谱》2014,32(8):837-842
利用膜萃取-气相色谱/微分离子迁移谱(ME-GC/DMS)对水中的1,4-二恶烷污染物进行了检测。考察了射频电压、采样流速、膜渗透时间、Trap预富集时间等参数对检测二恶烷的影响规律。结果显示:在优化条件下,二恶烷的定量线性范围为2.0~20.0 μg/L,检出限为0.67 μg/L。实验证明,二恶烷与5种氯代烃的混合物在ME-GC/DMS的二维分离谱图中得到特异性响应,增加了识别的准确性。该研究为发展现场实时监测地下水中污染物的方法提供了重要参考。  相似文献   

6.
气相色谱法测定饮用水及其源水中灭草松和2,4-滴   总被引:3,自引:0,他引:3  
采用气相色谱ECD检测器同时分离检测水中灭草松和2,4-滴两种农药.水样中灭草松和2,4-滴在酸性条件下经乙酸乙酯萃取,然后用碘甲烷溶液酯化,生成较易挥发的甲基酯类衍生物,用毛细管气相色谱-电子捕获检测器分离测定.对衍生方式、温度和时间进行了优化,分别使用ECD和FPD检测器测定灭草松,而ECD检测灵敏度高.本法的最低检测质量浓度为灭草松0.15 μg/L,2,4-滴0.050 μg/L.方法灵敏度和精密度均满足分析要求.  相似文献   

7.
采用顶空毛细管气相色谱法测定水中1,2-二氯乙烷的含量。用HP-1毛细管柱分离,电子捕获检测器检测,1,2-二氯乙烷的线性良好,最低检测浓度为0.01mg/L,加标回收率为88.9%~93.5%,测定结果的相对标准偏差不大于4.3%(n=6)。  相似文献   

8.
建立气相色谱-质谱法测定镇痛泵在枸橼酸舒芬太尼模拟液中增塑剂环己烷1,2-二甲酸二异壬基酯(DINCH)迁移量,并为该产品的安全性评价提供依据。以二氯甲烷作萃取剂,萃取枸橼酸舒芬太尼模拟液中的DINCH,萃取液经HP-5MS型色谱柱(30 m×0.25 mm,0.25μm)分离,采用气相色谱-质谱法检测,外标法定量。环己烷1,2-二甲酸二异壬基酯在质量浓度为0.128~1.281μg/mL范围内与定量离子色谱峰面积线性关系良好,相关系数r为0.999 2,方法检出限为0.038 7μg/mL,定量限为0.174μg/mL。环己烷1,2-二甲酸二异壬基酯在模拟液中的加标回收率为93.2%,测定结果的相对标准偏差为3.5%(n=9)。该方法的灵敏度高、重复性好,适用于镇痛泵中DINCH迁移量的测定。DINCH在枸橼酸舒芬太尼模拟液中的迁移量较低,发生迁移的风险较小,相对比较安全。  相似文献   

9.
采用全二维气相色谱-硫化学发光检测器,以直馏柴油为研究对象,考察了一维色谱柱初始温度、升温速率及两维柱温温差等条件对含硫化合物分离的影响,建立了直馏柴油中含硫化合物的分析方法。本方法对基质复杂的直馏柴油中含硫化合物的分离,并定性分析或归类了直馏柴油中的主要含硫化合物。以苯并噻吩为测试样,以峰面积对浓度作图,硫的浓度在1~100mg/kg范围内,峰面积与硫的浓度呈线性关系,相关系数大于0.999。与传统一维气相色谱相比,全二维气相色谱技术除可检测到苯并噻吩类、二苯并噻吩类等含硫化合物外,还可检测到直馏柴油中的硫醚类化合物;苯并噻吩类和二苯并噻吩类化合物也可得到较好分离。  相似文献   

10.
以联苯-联苯醚混合物为萃取剂,建立了分散液液微萃取-气相色谱电子捕获检测器测定饮用水中7种挥发性卤代烃的方法。此萃取剂为无卤素萃取剂,密度大于水,可通过离心分离,萃取过程可在3 min内完成。对萃取剂用量、分散剂种类及用量、萃取时间、萃取温度等条件进行了优化。5.00 m L水样用200μL萃取剂和0.30 m L分散剂(甲醇)的混合物进行萃取,室温下萃取30 s,7种挥发性卤代烃的萃取率≥90%,富集倍率为22.5~24.7。萃取液经DB-624毛细管柱分离,用电子捕获检测器定量检测,检出限为0.003~0.032μg/L。检测三氯甲烷的线性范围为0.500~100.0μg/L,三氯乙烯和三溴甲烷的线性范围为0.100~20.0μg/L,四氯化碳、四氯乙烯、二氯一溴甲烷、一氯二溴甲烷的线性范围为0.050~10.0μg/L。在上述线性范围内,工作曲线的相关系数≥0.998。方法的相对标准偏差在2.1%~7.6%之间,加标回收率在93.0%~102.9%之间。  相似文献   

11.
Ion mobility spectrometry detection for gas chromatography   总被引:2,自引:0,他引:2  
The hyphenated analytical method in which ion mobility spectrometry (IMS) is coupled to gas chromatography (GC) provides a versatile alternative for the sensitive and selective detection of compounds after chromatographic separation. Providing compound selectivity by measuring unique gas phase mobilities of characteristic analyte ions, the separation and detection process of gas chromatography-ion mobility spectrometry (GC-IMS) can be divided into five individual steps: sample introduction, compound separation, ion generation, ion separation and ion detection. The significant advantage of a GC-IMS detection is that the resulting interface can be tuned to monitor drift times/ion mobilities (as a mass spectrometer (MS) can be tuned to monitor ion masses) of interest, thereby tailoring response characteristics to fit the need of a given separation problem. Because IMS separates ions based on mobilities rather than mass, selective detection among compounds of the same mass but different structures are possible. The most successful application of GC-IMS to date has been in the international space station. With the introduction of two-dimensional gas chromatography (2D-GC), and a second type of mobility detector, namely differential mobility spectrometry (DMS), GC prior to mobility measurements can now produce four-dimensional analytical information. Complex mixtures in difficult matrices can now be analyzed. This review article is intended to provide an overview of the GC-IMS/DMS technique, recent developments, significant applications, and future directions of the technique.  相似文献   

12.
In standalone ion mobility spectrometry (IMS) instruments, the effect of drift gas turbulence reduces the sensitivity and resolution of the instrument. A traditional ion detector constructed with a Faraday plate and used to detect ions in an IMS is positioned at the end of the drift region. Drift gas flowing through this detector may introduce turbulence near the detector, possibly affecting the sensitivity and resolution of the device. To address this problem, a novel Faraday detector with a double layer structure was constructed. A number of dense and staggered holes were created on each layer of the detector. This design enabled the drift gas to pass through the holes of the detector, and the staggered nature of holes in the detector ensured that the ions could be detected. Theoretical simulations were conducted using the finite element method to obtain velocity distributions for both a standard Faraday detector and the modified Faraday detector. The results indicated that the novel ion detector created a homogenous gas under at high inlet flow rate while turbulence was still evident for the traditional Faraday detector. When the inlet flow rate was 1000 mL/min, the range of the unstable region of the drift gas in the axis of the drift tube with the novel ion detector was reduced by 97% relative to that for the traditional detector. The data suggests that due to such gains, sensitivity and resolution may be improved for standalone IMS instruments.  相似文献   

13.
Due to its high sensitivity and resolving power, gas chromatography-ion mobility spectrometry (GC-IMS) is a powerful technique for the separation and sensitive detection of volatile organic compounds. It is a robust and easy-to-handle technique, which has recently gained attention for non-targeted screening (NTS) approaches. In this article, the general working principles of GC-IMS are presented. Next, the workflow for NTS using GC-IMS is described, including data acquisition, data processing and model building, model interpretation and complementary data analysis. A detailed overview of recent studies for NTS using GC-IMS is included, including several examples which have demonstrated GC-IMS to be an effective technique for various classification and quantification tasks. Lastly, a comparison of targeted and non-targeted strategies using GC-IMS are provided, highlighting the potential of GC-IMS in combination with NTS.  相似文献   

14.
STEVENSON Robert 《色谱》2010,28(9):823-825
The detector, as well as being an essential supporting device for the gas chromatography (GC) has also played a critical role in the development of the technique as a whole. The mass spectrometer (MS) is still the commonly praised detector as before. In fact, the information of fragmentation patterns is seldom used in practice, and the GC-MS instrument is even more expensive. For today’s analytical problems, it seems that element specific detectors can and should be used for many applications rather than GC-MS.  相似文献   

15.
薛高旭  王沁怡  曹玲  孙晶  杨功俊  冯有龙  方方 《色谱》2022,40(12):1119-1127
目前,主动性的现场稽查已成为市场监管的发展趋势,这需要在现场快速有效地筛查大量产品,评估是否含有非法添加化学药物,对有嫌疑的样品及时封存,再送至实验室进一步检验。离子迁移谱技术是近年来发展起来的快筛技术之一。实验采用固相萃取-离子迁移谱技术,建立了祛痘类化妆品中14种抗菌药物的快速筛查方法。对离子迁移谱检测条件、样品提取条件、固相萃取净化条件(固相萃取柱、淋洗液种类、洗脱液种类及体积)进行了详细考察与优化。最终使用80%(体积分数)乙腈水溶液(含0.2%(质量分数)三氯乙酸)作为样品提取溶液,提取后上样于活化后的弱阳离子交换柱(Oasis® MCX固相萃取柱), 3.0 mL甲醇淋洗,1.0 mL 2%氨水甲醇洗脱,洗脱液直接进离子迁移谱检测。14种抗菌药物的迁移时间在11~17 ms之间,检出限为0.2~1.2 μg/g。同时,由于离子迁移谱法线性范围较窄,不能准确定量,建立了高效液色谱(HPLC)定量方法,用于固相萃取前处理步骤的优化和阳性样品的验证。25批化妆品样品中,筛查出1批阳性样品,与HPLC检测结果相符。该方法快速、简便、高效,显著降低了祛痘类化妆品基质对离子迁移谱检测14种抗菌药物的干扰,提高了检测灵敏度,有效降低了假阳性和假阴性的发生,可用于化妆品现场快速筛查,同时也扩大了离子迁移谱在化妆品等复杂基质中非法添加化学药物检测的应用范围。  相似文献   

16.
Atmospheric pressure chemical ionization and ion mobility spectrometry (IMS) have traditionally been viewed as a qualitative analytical technique for identifying specific chemicals in the atmosphere. This work employs a nonlinear model based on molecular collision rate theory for quantitative modeling of chemical analyte concentrations. The collision rate between any two molecules depends on the relative populations of each chemical species in the volume of air analyzed where most collisions between ions, or neutral molecules and ions, result in no charge transfer. The rate constants for formation of product ions and consumption of source ions are estimated using empirical data over a wide concentration range for several analytes and reagent gases. The rate constants are unique to the analyte and the reagent gas as well as the sensitivity of the particular IMS instrument and provide a quantitative model to relate the mobility peak amplitudes to the analyte concentration. The rate constants can also be normalized by the reaction ion consumption rate constant to remove the IMS instrument sensitivity and provide a qualitative metric for analyte identification independent of a particular IMS instrument. A quantitative example is given for an acetic acid plume measured by a hand-held IMS detector outdoors has the plume passes. The quantitative rate constants provide a reasonable basis for estimating analyte concentration from the ion mobility spectra over a wide range of analyte concentrations.  相似文献   

17.
This study explores the application of specific thermionic ionisation detection in comprehensive 2-D GC (GC x GC) and represents the first report of GC x GC with nitrogen phosphorus detection (GC x GC-NPD). Of particular interest is the performance of the NPD with respect to peak parameters of asymmetry and sensitivity. Since GC x GC produces much narrower peaks than obtained with fast GC (e.g. 100 ms vs. <1 s) the effect of detector response time and any lack of symmetry arising from the detection step is important if peak separation (resolution) is to be maintained. It was observed that detector gas flows had a significant impact on peak asymmetry and peak magnitude, and that optimisation of the detector was critical, particularly for complex sample analysis by GC x GC-NPD. Peak asymmetries ranging from As = 1.8 to 8.0 were observed under different conditions of detector gas flows. Comparison of GC x GC-NPD with GC x GC-flame ionisation detection (FID) showed the former to be approximately 20 times more sensitive for the detection of nitrogen-containing methoxypyrazines analytes, and GC x GC-NPD had a larger linear detection range compared to GC x GC-FID. Furthermore, comparison of GC x GC-NPD and GC x GC-TOFMS chromatograms for the analysis of coffee head-space demonstrated the benefits of selective detection, ultimately realised in a comparatively simplified contour plot.  相似文献   

18.
王亚韡  张庆华  江桂斌  贺卿 《色谱》2007,25(1):21-24
利用大体积进样技术(large volume injection,LVI),结合气相色谱-质谱方法对二英的测定效果进行了研究。同时与传统分流/不分流进样技术进行了对比。对进样体积为1,5,10,25,50和100 μL的色谱图进行了分析。研究表明使用大体积进样方式,在不影响色谱分离度的同时,大幅度提高了分析灵敏度。通过对土壤样品的检测,证明该方法可以用于环境样品的实际测定。  相似文献   

19.
Ion mobility spectrometry (IMS) is a proven technology for detection of vapor phase chemical warfare agents. The technology is suitable for field portable instrumentation due to its small size, high sensitivity, speed of analysis, and low power consumption. However, it suffers from a limited dynamic range and potential difficulties in identifying compounds in complex matrices. The use of gas chromatography (GC) coupled to IMS can overcome the difficulty of chemical identification in mixtures by separating the sample into individual components before detection. Using this approach, IMS technology has previously been adapted to detect biological aerosols using an open tube pyrolyzer and a short GC column (Py-GC-IMS). The open sample introduction tube of a Py-GC-IMS instrument would be a convenient configuration to accept aerosol particulates, and while viewed as needed for aerosol trapping, is not optimal for liquid chemical analyses. To examine the usefulness of an existing Py-GC-IMS system for analysis of chemicals in water, an existing open-port sample interface was replaced with a septum-equipped closed tube injector to contain analyte vapors resulting from liquid injection. Tributylphosphate (TBP) was used as a surrogate chemical warfare agent, and aqueous injections into both closed and open tube assemblies were performed. Sample introduction into the closed tube inlet was also accomplished using solid phase microextraction (SPME) preconcentration. The limit of detection for TBP using an open tube, closed tube, and closed tube configuration with SPME sample introduction was 0.980, 0.196, and 0.0098 mg/L, respectively.  相似文献   

20.
Ion mobility spectrometry coupled to multi capillary columns (MCC/IMS) combines highly sensitive spectrometry with a rapid separation technique. MCC\IMS is widely used for biomedical breath analysis. The identification of molecules in such a complex sample necessitates a reference database. The existing IMS reference databases are still in their infancy and do not allow to actually identify all analytes. With a gas chromatograph coupled to a mass selective detector (GC/MSD) setup in parallel to a MCC/IMS instrumentation we may increase the accuracy of automatic analyte identification. To overcome the time-consuming manual evaluation and comparison of the results of both devices, we developed a software tool MIMA (MS-IMS-Mapper), which can computationally generate analyte layers for MCC/IMS spectra by using the corresponding GC/MSD data. We demonstrate the power of our method by successfully identifying the analytes of a seven-component mixture. In conclusion, the main contribution of MIMA is a fast and easy computational method for assigning analyte names to yet un-assigned signals in MCC/IMS data. We believe that this will greatly impact modern MCC/IMS-based biomarker research by “giving a name” to previously detected disease-specific molecules.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号