首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 62 毫秒
1.
玉米是世界主要粮食作物之一,使用不符合国家标准的劣质种子将严重影响玉米作物产量,如何快速准确高效鉴别劣质玉米种子亟待解决。采用高光谱图像系统获取900粒“豫安三号”玉米种子的900~1 700 nm光谱曲线,其中训练集和测试集比例为3∶2,分别为540粒和360粒。利用电鼓风式烘干箱对种子损伤处理,获得不同损伤程度的玉米种子样本,采集光谱后完成发芽试验,以此判别种子活力。为提高信噪比,截取963.27~1698.75 nm范围内的玉米种子光谱波段作为有效波段;采用标准正态变换(SNV)、多元散射校正(MSC)两种预处理方式对原始光谱数据预处理,并采用连续投影算法(SPA)、竞争性自适应重加权算法(CARS)两种特征波段提取算法对预处理后的光谱数据提取特征波段,波长反射率作为输入矩阵X,预设样本类别作为输出矩阵Y;最后采用支持向量机(SVM)模型建模分析,研究结果表明:MSC-CARS-SVM模型为最佳模型,模型识别成功率为98.33%,其Kappa系数为0.985。在此基础上,采用遗传算法(GA)对SVM中惩罚系数c和核函数参数g寻优,模型准确率提升至100%,可实现对热损伤劣质玉米种...  相似文献   

2.
基于高光谱技术的玉米种子可视化鉴别研究   总被引:2,自引:0,他引:2  
种子纯度是衡量种子品质的重要指标。提出一种基于近红外(874~1 734 nm)高光谱技术实现玉米种子可视化鉴别的方法。采集4个品种共384个玉米种子样本的高光谱图像数据,随机选择288个样本作为建模集,剩余96个样本作为预测集。对玉米种子光谱曲线进行分析后,通过连续投影算法(SPA)选取7个特征波段作为输入,结合偏最小二乘法判别分析(PLS-DA)模型,对预测集进行预测,获得较好的分类效果,其中RC=0.917 7,RMSECV=0.444 2; RCV=0.911 5,RMSECV=0.459 9,建模集和预测集的总体鉴别率分别为78.5%和70.8%。通过图像处理技术提取高光谱图像中每个玉米颗粒的平均光谱数据,输入建立的SPA-PLS-DA模型,在计算生成的鉴别图中以不同颜色标识不同类别,实现了混杂玉米种子样本的可视化鉴别。对3份不同组成的混杂种子样本进行鉴别,达到了较好的可视化效果。结果表明,通过可视化鉴别技术,可以直观方便地观察混杂种子样本中不同品种种子的分布和数量,为农业生产中种子的纯度鉴别和筛选提供了帮助。  相似文献   

3.
高光谱成像技术的库尔勒梨早期损伤可视化检测研究   总被引:2,自引:0,他引:2  
利用高光谱成像技术对库尔勒梨早期损伤进行快速识别检测。以60个库尔勒梨为研究对象,采集380~1 030 nm波段范围内完好样本和损伤后1~7天样本的480幅高光谱图像。提取图像中感兴趣区域(ROI)的平均光谱信息,利用小波变换(WT)对光谱数据进行去噪平滑,将去噪后的全部样本按2∶1的比例分成建模集(320个)和预测集(160个)。利用二阶导数从全谱信息中提取出19个特征波长,分别基于全谱和提取出的特征波长对建模集和预测集进行支持向量机(SVM)建模分析。结果表明,基于全谱和特征波长的判别分析模型中,两者预测集的识别率都达到93.75%,表明提取的特征波长包含了光谱数据中的关键信息。然后,基于特征波长运用波段比运算挑选最佳波段比,根据波段比F值的分布确定光谱图像分割的最佳波长684和798 nm。对最佳波段比(684/798 nm)下的图像,利用选择性搜索(SS)对高光谱图像中样本的完好和损伤区域进行分割,从分割结果来看,1~7天损伤样本的受损区域能够被准确检测出来。研究结果表明:基于高光谱成像技术对库尔勒梨进行损伤鉴别是可行的,该研究所获得的特征波长和波段比为研发在线实时的库尔勒梨损伤检测系统提供支撑。  相似文献   

4.
针对高光谱成像特点,提出了一种基于三维特征检测微小摄像头的方案。在空间维利用猫眼效应筛选疑似目标,在光谱维对结果进行精准判定。依据摄像头结构,分析了可见光摄像头的反射光谱特征。基于几何光学和辐射度学,计算和仿真了系统的探测距离。结果表明,正常工作时,光功率影响最小探测距离,目标尺寸影响最大探测距离。搭建了微小摄像头光谱特征验证系统。结果表明,采用吸收型红外截止滤光片的目标的非反射光占比曲线变化平缓且数值高,采用反射型红外截止滤光片的目标的非反射光占比曲线可见光部分数值高,红外部分数值低,从700 nm附近开始下降,甚至发生突变,实验数据显示,突变位置的斜率绝对值是红外波段斜率绝对值的10倍以上。实验结果与预期分析的结果一致,验证了高光谱成像技术检测微小摄像头的可行性。  相似文献   

5.
为了建立多光谱参数用于草莓成熟度的自动识别,采用高光谱图像技术,通过提取草莓样本ROI的平均光谱,计算已有的八个成熟度参数Ind1,Ind2,Ind3,IAD,I1,I2,I3,I4的参数值,并结合Fisher线性判别法判断八个参数对于三种成熟度(成熟、接近成熟、未成熟)草莓样本的分类识别效果,发现基于I4参数的线性判别分析模型的识别效果最佳,建模集和预测集识别准确率分别为90%和91.67%;基于草莓样本的光谱特征,提取与草莓成熟度相关的三个波长535,675和980 nm,并基于这三个波长和已有的参数形式,构建了四个用于草莓成熟度检测的新参数:i1,i2,i3,i4,通过Fisher线性判别法判断四个参数的分类识别效果,发现基于参数i1,i2和i4的线性判别分析模型的识别效果均比参数I4好,建模集和预测集识别准确率为95.83%,95.83%,95.83%和95%,95%,96.67%。结果表明新建立的多光谱参数i1,i2和i4可以用于草莓成熟度的自动分类识别,为草莓成熟度的在线检测提供了理论依据。  相似文献   

6.
7.
深入分析先进的焦平面技术和光谱成像技术的发展趋势,为探测器及光谱成像仪的研究提供参考。对光谱成像技术的现状和发展趋势、焦平面技术、先进焦平面技术对光谱成像系统技术的推动作用三个方面进行详细的分析总结,认为焦平面技术向着高性能、大规模面阵规格、高灵敏度、宽谱响应的方向发展;并推动光谱成像系统向着高分辨率、宽幅、多波段、更短重访周期和简化系统方向发展。成像光谱仪的发展趋势和需求指明焦平面技术的发展方向,同时焦平面技术的发展也会引领成像光谱仪系统进步和革新。  相似文献   

8.
深入分析先进的焦平面技术和光谱成像技术的发展趋势,为探测器及光谱成像仪的研究提供参考。对光谱成像技术的现状和发展趋势、焦平面技术、先进焦平面技术对光谱成像系统技术的推动作用三个方面进行详细的分析总结,认为焦平面技术向着高性能、大规模面阵规格、高灵敏度、宽谱响应的方向发展;并推动光谱成像系统向着高分辨率、宽幅、多波段、更短重访周期和简化系统方向发展。成像光谱仪的发展趋势和需求指明焦平面技术的发展方向,同时焦平面技术的发展也会引领成像光谱仪系统进步和革新。  相似文献   

9.
基于高光谱图像技术和SVDD的玉米种子识别   总被引:1,自引:0,他引:1  
特征提取的充分性和分类器设计的合理性是影响玉米种子识别精度的两个关键问题。采集了玉米种子的高光谱图像,并提取每粒玉米种子在不同波段下的图像熵作为分类特征;在此基础上,利用支持向量数据描述方法构建每类玉米的分类器模型,对待识别样本的测试精度达到了94.14%,对新类别样本的识别精度达到92.28%。仿真结果表明:新方法可实现玉米种子的准确识别,同时解决了传统分类器对新类别样本的错误分类问题。  相似文献   

10.
11.
基于高光谱成像技术的鲜枣裂纹的识别研究   总被引:1,自引:0,他引:1  
裂纹是衡量鲜枣品质的重要指标之一,果皮裂纹加速鲜枣的腐烂,导致鲜枣货架期的缩短,严重降低鲜枣的经济价值。采用高光谱成像技术在380~1 030 nm波段范围内对鲜枣裂纹的位置及大小信息特征进行快速识别。选用偏最小二乘回归(PLSR)、连续投影法(SPA)和全波段图像主成分分析(PCA),得到鲜枣裂纹相关的敏感波段。然后利用选取的鲜枣裂纹的敏感波段对建模集的132个样本建立最小二乘支持向量机(LS-SVM)判别模型,并对预测集的44个样本进行判别。对PLSR-LS-SVM,SPA-LS-SVM和PCA-LS-SVM判别模型采用ROC曲线进行评判,得出PLSR-LS-SVM模型对鲜枣裂纹定性判别的结果(area=1,std=0)最佳。选取PLSR回归系数挑选出的5条鲜枣裂纹敏感波段(467,544,639,673和682 nm)对应的单波段图像进行主成分分析,其中将主成分PC4的图像结合图像处理技术,最终识别出鲜枣裂纹的位置、大小信息。结果表明,采用高光谱成像技术结合光谱图像处理可以实现鲜枣裂纹定性判别和定量识别的研究,为进一步开发相关仪器的研究提供理论方法和依据。  相似文献   

12.
机采籽棉杂质分类检测为调整棉花清理机械加工参数和工序提供参考依据,对提升皮棉品质具有重要意义。但由于籽棉棉层分布不均匀,使得图像检测难度增大,使用传统的检测方法无法有效检测各类杂质。采用高光谱成像方法对机采籽棉中的棉叶、棉枝、地膜和铃壳(内外)五种杂质进行分类判别检测。首先采集120个机采籽棉样本的高光谱图像,选取感兴趣区域获取平均光谱曲线。发现由于物质构成的差异,不同杂质体现出不同的吸收和反射特性,不同种类物质之间的光谱差异大于同类物质。对提取的平均光谱曲线进行主成分分析(PCA),结果显示棉花、残膜和铃壳外与其他三类相比,有较好的聚集性和可分性,但是棉叶、铃壳内和棉枝三类相互叠加在一起,空间分布存在严重交叉重叠。以提取的平均光谱曲线为训练样本,选择线性判别分析(LDA)、支持向量机(SVM)和神经网络(ANN)三种分类判别算法,对算法参数进行寻优,并建立机采籽棉杂质分类判别模型。其中,经过LDA模型降维后的样本空间较PCA表现出了更好的聚集性和可分性,采用正则化防止过拟合,得到训练集准确率为86.4%,测试集准确率为86.2%;SVM模型的参数寻优结果为C=105,g=0.1,其训练集准确率为83.42%,测试集准确率为83.40%;ANN模型参数寻优得到隐含层数和神经元个数分别为2和17,训练集准确率为82.9%,测试集准确率为81.8%。对三种模型的分类效果和检测用时进行比较,LDA模型结果最优。通过对高光谱图像进行像素等级分类判别,结果显示棉花识别效果较好,植物性杂质都被有效检测,但是地膜和棉花存在误识别,分类效果与杂质光谱的分类判别模型结果一致。因此,采用高光谱成像技术可以快速、无损的检测和识别籽棉杂质,为棉花加工装备提供反馈参数,对棉花加工机械化和智能化有重要意义。  相似文献   

13.
基于近地高光谱成像技术结合化学计量学方法,实现了黑豆品种的鉴别。实验以三种不同颜色豆芯的黑豆为研究对象,采用高光谱成像系统采集380~1 030 nm波段范围的高光谱图像,提取高光谱图像中的样本感兴趣区域平均光谱信息作为样本的光谱进行分析,建立黑豆品种的判别分析模型。共采集180个黑豆样本的180条平均光谱曲线。剔除明显噪声部分之后以440~943 nm范围光谱为黑豆样本的光谱,采用多元散射校正(multiplicative scatter correction,MSC)对光谱曲线进行预处理。分别以全部光谱数据、主成分分析(principal component analysis,PCA)提取的光谱特征信息、小波分析(wavelet transform,WT)提取的光谱特征信息建立了偏最小二乘判别分析法(partial least squares discriminant analysis,PLS-DA),簇类独立模式识别法(soft independent modeling of class analogy,SIMCA),最邻近节点算法(K-nearest neighbor algorithm,KNN),支持向量机(support vector machine,SVM), 极限学习机(extreme learning machine,ELM)等判别分析模型。以全谱的判别分析模型中,ELM模型效果最优;以PCA提取的光谱特征信息建立的模型中,ELM模型也取得了最优的效果;以WT提取的光谱特征信息建立的模型中,ELM模型结识别效果最好,建模集和预测集识别正确率达到100%。在所有的判别分析模型中,WT-ELM模型取得了最优的识别效果。实验结果表明以高光谱成像技术对黑豆品种进行无损鉴别是可行的,且WT用于提取光谱特征信息以及ELM模型用于判别黑豆品种能取得较好的效果。  相似文献   

14.
优质棉种是全面推广棉花精量播种技术的基础。采用近红外高光谱成像技术实现微破损棉种可视化识别,为棉种精选设备的研制奠定理论基础。以未破损和微破损两类棉种各540粒作为样本(其中405粒作为建模集,135粒棉种作为预测集),分批采集874~1 734 nm范围的样本高光谱图像,提取光谱数据并去除首尾两端明显噪声保留955~1 659 nm范围内光谱为棉种样本的光谱。首先使用Kennard-Stone(KS)算法进行样本划分,并通过平滑算法Savitsky-Golay(SG)对光谱进行预处理。采用二阶导数光谱(2nd spectra)方法、连续投影算法(SPA)和主成分载荷(PCA-loading)方法分别选取10,14和11个特征波长。基于全部光谱数据和特征波长建立偏最小二乘判别分析(PLS-DA)模型、K最邻近(KNN)模型和支持向量机(SVM)模型,SPA-PLS-DA模型取得了较好的结果,建模集和预测集的鉴别率分别为91.50%和90.33%。基于SPA-PLS-DA模型分别对未破损样本和微破损样本及其混合样本图像进行识别,取得了较好的识别结果,微破损棉种的识别率达90%以上。结果表明,结合近红外高光谱成像和图像处理技术,能够实现微破损棉种的可视化识别。  相似文献   

15.
基于高光谱成像和判别分析的黄瓜病害识别   总被引:3,自引:0,他引:3  
利用光谱成像技术(400~720 nm)识别黄瓜白粉病、角斑病、霜霉病、褐斑病和无病区域。构建高光谱图像采集系统进行样本图像的采集,预处理和光谱信息的提取。由于获得的原始光谱数据量很大,为了减少后续运算量,提高准确率,采用逐步判别分析和典型判别分析两种方法进行降维。逐步判别从55个波段中选择12个波段,典型判别从55个波段中提取2个典型变量。利用选择的光谱特征参数建立病害识别模型。逐步判别构建的模型对训练样本和测试样本的判别准确率分别为100%和94%,典型判别构建的模型对训练样本和测试样本的判别准确率均为100%。说明利用高光谱成像技术可以进行黄瓜病害的快速、准确识别,并为实现可见光谱范围内黄瓜病害的田间实时在线检测提供了可能。  相似文献   

16.
高光谱成像与图像结合进行油菜角果蚜虫侵染的定位识别   总被引:1,自引:0,他引:1  
油菜蚜虫可造成油菜籽的严重减产,及早进行油菜蚜虫判别以及其侵染定位识别有助于精准喷药。采用可见-近红外高光谱成像技术结合图像分析对185个蚜虫侵染以及138个健康油菜角果进行判别,并进行蚜虫的定位分析。首先采用主成分分析法(PCA)对两类样本的平均光谱进行聚类分析,并基于X-loading得出737nm波段可作为判断蚜虫的重要波段,采用Boxplot进行两类样本间单波段处的统计分析,同时得出基于737nm波段判断蚜虫侵染油菜角果的线性公式为y=2.917 6-3.345 7x(x为样本在737nm处的光谱值,y为样本的分类预测值)。采用此公式对实验样本进行判别分析,可以发现角果蚜虫识别率为99.0%。同时基于737nm处的油菜角果单波段灰度图进行蚜虫的定位识别,可以得到蚜虫的识别率为81.1%。结果表明,采用737nm处的单波段光谱信息以及图像信息可进行油菜角果蚜虫侵染的定位识别,为进一步开发便携仪检测仪以及精准喷药提供理论和方法依据。  相似文献   

17.
基于高光谱图像的即食海参新鲜度无损检测   总被引:1,自引:0,他引:1  
新鲜度是即食海参加工品质调控和贮藏品质监控的关键指标。针对感官评定和现有理化检测无法满足即食海参产品大批量、标准化、工业化生产问题,提出了一种基于高光谱图像的即食海参新鲜度快速无损检测方法,通过图像主成分分析和波段比运算相结合,优选特征波长和图像;依据海参腐败机理,建立图像纹理特征与即食海参新鲜度等级间的关联模型,实现即食海参新鲜度无损、快速评价。首先针对高光谱图像巨大的数据量展开降维研究。根据即食海参体壁光谱吸收特性,以具有明显化学吸收特征的波长(474和985 nm)为分界点,获得包括全检测波段(400~1 000 nm)在内的六个待处理波段,通过分段图像主成分分析实现待测波段的优选,利用权重系数和波段比图像运算,最终将686和985 nm波段比图像确定为特征图像。面向特征图像的感兴趣区域(ROI),构建灰度共生矩阵(gray-level co-occurrence matrix, GLCM)、灰度梯度共生矩阵(gray-gradient co-occurrence matrix, GGCM)、改进的局部二元模式纹理描述子(local binary pattern,LBP),分别提取纹理参数作为输入,以挥发性盐基氮(total volatile basic nitrogen, TVB-N)检测为标准,建立经粒子群优化的BP 神经网络(back propagation,BP)即食海参新鲜度判别模型,新鲜度等级判别准确率分别为90%,95%和80%。结果表明,即食海参高光谱图像灰度梯度共生矩阵的纹理特征用于新鲜度判别效果较好。为即食海参新鲜度快速无损检测方法研究和仪器开发提供了理论基础和数据支持。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号