共查询到18条相似文献,搜索用时 93 毫秒
1.
近红外光谱结合主成分分析和BP神经网络的转基因大豆无损鉴别研究 总被引:2,自引:0,他引:2
为探究无损鉴别转基因大豆的可行性,利用近红外光谱分析仪对大豆扫描得到反射光谱,应用主成分分析结合BP神经网络方法进行分析鉴别。首先应用主成分分析法,得到包含大豆99.03%的光谱信息的6个主成分,再将其作为BP神经网络的输入,对应的大豆种类作为输出,建立一个三层BP神经网络模型。该模型对于转基因大豆的正确识别率为100%,说明近红外光谱结合主成分分析和BP神经网络的方法能无损快速准确地鉴别转基因大豆。 相似文献
2.
3.
近红外光谱结合主成分分析鉴别不同产地的南丰蜜桔 总被引:2,自引:0,他引:2
采用近红外光谱结合主成分分析(PCA)建立不同产地南丰蜜桔鉴别模型,实现不同产地南丰蜜桔的快速鉴别。分别研究一个果园内不同位置的蜜桔,洽湾、市山和白舍等南丰县三个不同乡镇的南丰蜜桔,福建邵武、广西柳城和江西南丰等三个不同省份的南丰蜜桔之间的差异,蜜桔保存时间对主成分分析模型的影响。结果表明同一个果园内不同位置的蜜桔不存在明显差别,不同产地的蜜桔有很好的分类效果,蜜桔的短时间保存对近红外光谱的主成分分析模型不会产生明显影响。不同的光谱预处理方法对主成分分析模型产生较大影响,多元散射校正(MSC)结合二阶导预处理得到的主成分分析投影具有最佳的分类效果。该研究可为南丰蜜桔的产地鉴别提供一种参考方法。 相似文献
4.
基于主成分分析和神经网络的近红外光谱苹果品种鉴别方法研究 总被引:32,自引:17,他引:32
提出了一种用近红外光谱技术快速鉴别苹果品种的新方法,首先用主成分分析法对苹果品种进行聚类分析并获取苹果的近红外指纹图谱,再结合人工神经网络技术进行品种鉴别。主成分分析表明,主成分1和主成分2的累积可信度已达98%,以主成分1和2对所有建模样本的得分值做出的得分图,对不同种类苹果具有很好的聚类作用。利用主成分分析得到的载荷图可以得到对于苹果品种敏感的特征波段,用特征波段图谱作为神经网络的输入建立三层BP人工神经网络模型。每个品种各25个苹果共75个用来建立神经网络模型,余下的共15个用于预测。对未知的15个样本进行预测,品种识别准确率达到100%。说明文章提出的方法具有很好的分类和鉴别作用,为苹果的品种鉴别提供了一种新方法。 相似文献
5.
《光谱学与光谱分析》2016,(10)
为实现高效短程生物脱氮及氨氮和亚硝酸盐氮的快速检测,采用主成分分析结合BP神经网络的方法建立短程生物脱氮工艺中氨氮和亚硝酸盐氮的近红外光谱定量分析模型(BP神经网络模型)。工艺运行结果表明:原水经过好氧阶段氨氮从45.3mg·L-1下降到2.7mg·L-1,亚硝酸盐氮从0.01mg·L-1上升到19.6mg·L-1,硝酸盐氮受到抑制;在缺氧段亚硝酸盐氮从19.6mg·L-1下降至1.2mg·L-1,系统实现了良好的短程生物脱氮效果。水样原始光谱主成分分析表明:前13个主成分代表了原始光谱数据的信息,其累计贡献率达到95.04%,排除了冗余信息且大大降低了模型的维数,光谱数据矩阵从192×2 203减少到192×13,大大降低了运算量并提高了模型的精度。BP神经网络模型校正结果显示:BP神经网络模型对氨氮、亚硝酸盐氮校正时的决定系数(R2)分别达到0.950 4和0.976 2,校正均方根误差(RMSECV)分别为0.016 6和0.010 9。BP神经网络模型预测结果显示:BP神经网络模型对氨氮、亚硝酸盐氮预测输出与期望输出之间的决定系数(R2)分别为0.974 0和0.981 4,预测均方根误差(RMSEP)分别为0.033 7和0.028 7,模型预测效果良好。研究表明,BP神经网络模型可以通过快速测定水样的近红外光谱数据预测短程生物脱氮工艺中氨氮和亚硝酸盐氮浓度,并根据氨氮和亚硝酸盐氮浓度变化及时、灵活地控制工艺的运行,为生物脱氮提供快速有效的检测技术和科学依据。 相似文献
6.
近红外光谱技术在遥感监测领域中应用广泛,针对典型地面目标物遥感监测识别需要,提出了光谱主成分分析(PCA)与模糊聚类结合的分类识别方法,提高了识别算法效率及准确性。以四类典型地面目标物作为研究对象,分别测量其在1 100~2 500 nm范围内漫反射光谱,首先对漫反射光谱进行主成分分析,得到代表光谱特征的主成分分量,然后将其作为模糊聚类分析模型输入参数,计算样品主成分集合之间贴合度,最后利用择近原则对样品进行匹配分类。结果表明,主成分分析可以有效提取光谱特征并且降低数据维度,结合基于择近原则的模糊分类方法,可有效提高算法准确性与效率,为遥感光谱在地面目标物识别应用提供了有益的参考。 相似文献
7.
基于独立主成分和BP神经网络的干红葡萄酒品种的鉴别 总被引:3,自引:0,他引:3
为了实现葡萄酒品种的快速无损鉴别,选用五种干红葡萄酒,进行可见和近红外光谱实验,提出了一种用可见和近红外光谱技术快速鉴别葡萄酒品种的新方法.采用独立主成分分析进行模式特征分析,经过选用不同的独立主成分数进行建模和预测,确定最佳独立主成分数为20.将这20个主成分作为神经网络的输入变量,建立三层BP神经网络,实现类别预测的同时也完成了数学建模与优化分析工作.5个品种的葡萄酒样本数均为35,共计175个样本.在神经网络学习中,将其分成训练集样本150个和预测集样本25个.对25个未知样本进行预测,准确率为100%.该研究在独立主成分分析的基础之上,根据干红葡萄酒各独立主成分的混合矩阵向量载荷图,选取了两个波段(400~430 nm与512~532 nm)作为葡萄酒的独立主成分分析的特征波段.说明该文提出的基于光谱技术和模式识别的方法不仅对葡萄酒具有很好的分类和鉴别能力,并且可以提取出葡萄酒的指纹特征,可用于葡萄酒的检测与技术开发. 相似文献
8.
有监督主成分回归法在近红外光谱定量分析中的应用研究 总被引:5,自引:0,他引:5
介绍了运用有监督主成分回归法建立近红外光谱定量分析模型的原理和方法.利用该方法先进行近红外光谱定量分析建模的波长信息选择,达到降低光谱数据维数的目的,然后建立数学模型,并用其分析预测集样品.文中以66个小麦样品为实验材料,随机选择其中40个样品建立小麦样品中蛋白质含量的近红外光谱定量分析模型,首先优选出4个波长点:4 632,4 636,5 994,5 997 cm-1,利用这4个波长点处光谱信息建立主成分回归模型预测26个样品的蛋白质含量,其结果与凯氏定氮法分析结果的相关系数为0.991,平均相对误差为1.5%.该方法从大量光谱数据中筛选出最重要的部分波长信息,实现了"少而精"的波长点选择,对建立抗共线性信息干扰的光谱定量分析模型,同时对指导专用近红外分析仪器设计中波长点的选择等方面都有一定的意义. 相似文献
9.
贮存时间是影响生菜品质的一项重要因素,传统的贮存时间鉴别方法主要依靠人工经验,但是这种方法的准确率和可信度并不高。研究的目标是建立一种基于模糊识别的模型进行生菜光谱分析以实现生菜贮存时间的鉴别,并与其他鉴别方法作比较。为此,在当地超市购买60份新鲜生菜样品,存放于冰箱中待用。首先,通过AntarisⅡ近红外光谱检测仪采集生菜样品的近红外光谱数据,每隔12小时检测一次,每个样本检测重复三次,并取三次平均值作为实验数据。其次,利用多元散射校正(MSC)减少近红外光谱中的冗余信息。为了进一步去除近红外光谱中的无用信息以及简化随后的数据分类过程,分别运用主成分分析(PCA)和排序主成分分析(PCA Sort)。其中,PCA Sort通过改进对主成分的排序方法能提高分类准确率,同时便于模糊线性鉴别分析(FLDA)进一步提取特征。PCA和PCA Sort的计算仅运用了前15个主成分(能充分反映光谱的主要信息)。最后,利用模糊线性鉴别分析算法(FLDA)和K近邻算法(KNN)进一步分类所得的低维数据。基于PCA和KNN算法的模型鉴别准确率达到43%,而基于PCA, FLDA和KNN算法的模型鉴别准确... 相似文献
10.
可见与近红外波段光谱反射率数据库是颜色科学与技术和遥感目标地物分类识别领域等研究与应用的基础数据。主成分分析(PCA)在光谱数据分析、光谱重建、高光谱数据降维以及遥感图像分类等方面有广泛应用。测量并建立了云南公园常见绿化植物柳树、樟、红花檵木、蓝花楹等48种植物150条叶片从可见光到近红外波段光谱反射率数据库,波长范围400~1 000 nm、间隔4 nm。并且分别对可见与可见到近红外两种波段范围进行PCA研究。结果表明:不同植物叶片按照红、绿、黄相同色相的光谱反射率曲线基本相似;但对于同一种植物,在可见光波段400~700 nm,因为体内叶绿素、叶黄素、叶红素和花青苷含量的不同,光谱反射率曲线有较大的差异;在近红外波段700~1 000 nm,所有植物叶片光谱反射率仅仅是大小不同,而同一植物光谱反射率基本不随波长变化。PCA分析表明:在可见光和可见与近红外波段前三个主成分的累积贡献率分别达到98.62%和94.97%。数据库及其PCA分析结果将为自然物体光谱重建、多光谱成像技术和遥感目标地物分类识别等领域应用提供支撑。 相似文献
11.
基于主成分分析和概率神经网络,提出了一种有效识别高甘油三脂血清荧光光谱的新方法.研究测量了正常和高甘油三脂血清在290 nm和350 nm激发光下产生的荧光光谱,并分别以3种采样间隔(1 nm、2 nm和5 nm)提取荧光强度作为样品的初始特征;利用主成分分析法对初始特征进行分析,以累积可信度大于95%的主成分作为样品特征;构建了4层概率神经网络,并分析了平滑系数和采样间隔对识别效果的影响.实验结果表明,当采样间隔采用5 nm,平滑系数位于0.26~0.92区间时,正常和高甘油三脂血清样品的识别率可达到95%和100%. 相似文献
12.
中国是马铃薯生产和消费大国,伴随马铃薯主粮化战略推进,马铃薯对中国农业结构和消费者饮食结构的影响与日俱增。环腐病是制约马铃薯产业发展的常见病害,对种薯会造成死苗死株,对加工原料会降低加工效率和成品质量,严重可达30%~60%。传统检测马铃薯病害的主要方法是目测、机器视觉以及高光谱成像等方法,目测或机器视觉方式鉴别环腐病需要对样品进行破坏;高光谱成像技术成本高昂,存在一定的应用局限性。因环腐病会造成整薯内部品质变化,利用近红外光谱技术探测整薯内部品质变化,从而将环腐病马铃薯从健康薯中区别开来,具有可行性和实用价值。创新地尝试利用近红外光谱结合SIMCA模式方法来区分马铃薯环腐病及健康薯。研究结果表明,基于主成分分析的SIMCA模式识别能有效判别马铃薯环腐病样品,模型校正集中环腐病和健康薯的识别率、拒绝率均为100%;模型验证集中环腐病的识别率、拒绝率分别为99.00%和100%,健康薯的识别率、拒绝率分别为94.12%和100%,所建模型精度较高。利用独立的18个样品进行模型外部验证,环腐病样品识别率为87.50%,健康薯识别率为80.00%,均没有错判。表明所建SIMCA二值识别模型效果良好,可满足实际应用,但模型精度需进一步提高。马铃薯环腐病发病部位接近表皮0.5 cm左右,近红外光谱对马铃薯样品有一定的透射和漫反射。可考虑采集马铃薯接近表皮部分的果肉组织内部光谱信息,结合马铃薯环腐病的发病机理及近红外漫反射光谱的特性,利用近红外识别模型进行环腐病判别,具有一定的创新性和应用性。 相似文献
13.
近红外漫反射光谱法快速鉴别石斛属植物 总被引:2,自引:0,他引:2
通过采集15种石斛171份样品的近红外漫反射光谱,结合化学计量学统计分析方法建立预测模型,对不同种石斛进行快速无损鉴别。应用Hotelling T2对随机抽取的5份样品的近红外光谱进行稳定性分析,结果表明,样品的近红外光谱具有较好稳定性。设计正交试验L24(2×4×3×8),对光程类型、光谱波段、导数和平滑四个因素进行优化处理。利用主成分分析对正交试验结果进行分析,结果显示,选择6 500~4 000cm-1的光谱波段,采用多元散射校正、二阶导数和Norris平滑对光谱预处理,提取的主成分数为7时,光谱判别正确率为100%。将正交试验优化条件作为偏最小二乘法判别分析的输入值,随机选取123份样本作为校正集建立预测模型,其余48份样本为预测集,评估预测模型的性能。结果表明,该模型前3个主成分累积贡献率为99.36%,设定鉴别标准偏差为±0.1时,该方法的正确识别率为97.92%,获得满意的结果。该方法的建立为不同种石斛的快速鉴别提供了一种新的方法,同时为药用植物的鉴别提供参考。 相似文献
14.
应用近红外光谱技术快速检别酱油品牌的研究 总被引:1,自引:0,他引:1
提出了一种采用近红外光谱快速鉴别酱油品牌的新方法,对不同品牌的酱油建立相应的指纹模型。对市场上8种典型品牌的酱油,通过近红外透射获取光谱曲线,选择了其中噪声较小的7 625~3 684 cm-1共3 942个波段作为建模分析数据。为了减少原始数据量,提高数据处理效率,对原始数据进行了多项式平滑拟合等预处理,采取主成分分析法,得到能反映酱油99.99%光谱信息的8个主成分。由这8个主成分得到的得分图,可以区分其中某几个品牌,但是不能做到区分全部品种,因此选取了人工神经网络进行了进一步信息提取与种类判别。将8个主成分作为人工神经网络的输入,对应的酱油品牌作为输出,通过不断调整参数,建立了最优的BP神经网络。8个品牌共242个样本作为建模学习样本,每个品牌各10个共80个样本作为检验样本。结果表明,在0.98的置信区间里取得了98.75%的识别正确率,为不同等级和品牌的酱油鉴别提供了一种新的方法。 相似文献
15.
近红外光谱温度修正定量分析模型的研究 总被引:6,自引:3,他引:6
以小麦粉末样品为实验材料,研究了环境温度对近红外光谱定量分析结果的影响。将环境温度作为外部变量,使用不同温度下的45个样品建立了测定小麦蛋白质含量的温度修正模型,预测不同温度下的小麦样品的蛋白质含量,结果同以22 ℃恒温下45个样品建立的模型进行了比较。分析结果表明:温度修正模型的预测标准差(SEP)平均为0.333,而恒温模型(22 ℃)的预测标准差随着环境温度与建模时温度差的增大而增大,当环境温度4 ℃时,SEP=0.601 6。温度修正模型可以有效的提高近红外光谱定量分析精度。 相似文献
16.
近红外光谱的河蟹新鲜度快速检测研究 总被引:1,自引:0,他引:1
河蟹的新鲜度是大多数消费者在购买时所考虑的最重要的因素,挥发性盐基氮(TVB-N)是当前国际通用的评价肉类新鲜度的指标,但其检测工序繁琐、耗费时间长,无法满足当前市场对河蟹新鲜度评价的迫切需求。因此,建立一种快速检测河蟹新鲜度的方法是当前急需解决的一大难题。将购于水产市场的河蟹,采用聚乙烯充氧袋快速运至实验室,样本数共126只。在洁净的工作台上处理后,将螃蟹分为42个实验样品,每个样品3只鲜活螃蟹;42个实验样品放在低温4℃的恒温生化培养箱中贮藏,每天从培养箱中按时取出6个螃蟹样品进行光谱数据采集及新鲜度指标TVB-N的测定,历时7 d。采用近红外光谱(NIRS)对贮藏在不同时间下的河蟹新鲜度进行评价,使用挥发性盐基氮(TVB-N)作为评价河蟹新鲜度的指标,首先通过比较经五折交叉验证(5-fold CrossValidation)算法、 kennard-stone(KS)算法、光谱-理化值共生距离(SPXY)算法三种样本划分方法处理后所建模型的预测效果确定最优样本划分方法,最终采用五折交叉验证(5-fold CrossValidation)算法对样本进行划分。其中的32个样品被划分为训练集进行模型构建,其余的10个样品被划分为测试集用于模型检验。然后在经过五折交叉验证法对样本进行划分的基础上,分别采用小波变换(WT)、 Savitzky-Golay平滑、一阶导数法(Db1)、二阶导数法(Db2)这4种单一算法以及小波变换(WT)与Savitzky-Golay平滑相结合的算法进行预处理,通过比较预处理后所建模型的预测效果,确定了小波变换(WT)预处理为最优光谱预处理方法,从而消除了光谱中的无用信息并提高了信噪比。再次,在WT预处理的基础上,分别采用主成分分析(PCA)法和连续投影(SPA)算法提取光谱特征波段,通过建模比较确定主成分分析(PCA)法为最优波长选择方法,以所选的16个特征波长作为模型的输入,不仅提高了模型的运行速度还可以提高模型的稳定性。最后,在经过PCA特征提取后,分别采用偏最小二乘回归(PLSR)算法和多元线性回归(MLR)算法构建TVB-N定量预测模型,通过比较两种模型的预测效果,确定了偏最小二乘回归(PLSR)模型为最优建模方法,最终确定的最优模型为基于WT-PCA-PLSR建立的模型,模型预测决定系数R^2为0.89,预测均方根误差RMSEP为3.00。综上所述,所建立的预测模型具有较高的精度,可以实现对河蟹新鲜度的快速检测,具有较好的市场应用前景。 相似文献
17.
PCA和SPA的近红外光谱识别白菜种子品种研究 总被引:2,自引:0,他引:2
为了实现对不同品种白菜种子的快速无损鉴别,应用近红外光谱技术获取白菜种子的光谱反射率,首先采用变量标准化校正和多元散射校正对原始光谱进行预处理;其次,采用主成分分析法(PCA)对光谱数据进行聚类分析,从定性分析的角度得到三种不同白菜种子的特征差异,并采用连续投影算法(SPA)选取特征波长;最后,分别基于全波段光谱、PCA分析得到的前3个主成分变量以及SPA算法选取的特征波长,建立了最小二乘支持向量机(LS-SVM)和偏最小二乘判别(PLS-DA)模型进行白菜种子不同品种的鉴别。从主成分PC1、PC2得分图中可以看出,主成分1和2对不同种类白菜种子具有很好的聚类作用。基于特征波长建立的PLS-DA和LS-SVM模型的判别结果优于基于主成分变量建立的模型,其中基于特征波长建立的LS-SVM模型识别效果最优,建模集和预测集的品种识别率均达到100%。结果表明,通过SPA算法选取的6个特征波长变量能够很好的反映光谱信息,提出的SPA算法结合LS-SVM预测模型能获得满意的分类结果,为白菜种子品种的识别提供了一种新方法。 相似文献
18.
提出了一种基于近红外光谱分析技术和最小二乘支持向量机的鉴别方法,能够快速、无损鉴别聚丙烯酰胺的三种类型。获取非离子,阴离子和阳离子等三种类型的聚丙烯酰胺样本的近红外漫反射光谱,用主成分分析方法对样本光谱数据进行降维,并提取主成分。基于前三个主成分对三种类型的聚丙烯酰胺样本进行聚类分析,并将主成分作为最小二乘支持向量机的输入。通过基于网格搜索的交叉验证方式优化最小二乘支持向量机的参数和作为其输入的主成分个数。每种类型聚丙烯酰胺各采集60个样本,共采集180个样本,每种类型样本随机选取45个样本,共135样本作为训练样本集,剩余45个样本作为测试集。为了验证该方法能否鉴别掺假样本,制备了掺入不同比例非离子聚丙烯酰胺的5个阴离子和5个阳离子聚丙烯酰胺样本。采用基于训练样本集交叉验证预测误差的F统计显著性检验方法来确定样本的鉴别结果误差阈值。结果表明,预测测试集时,准确率为100%。预测10个混和样本时,所有混合样本都被准确识别出。说明该方法能快速无损鉴别不同类型的聚丙烯酰胺并且具有掺假鉴别能力,为聚丙烯酰胺类型的快速鉴别提供了一种新方法。 相似文献