共查询到16条相似文献,搜索用时 109 毫秒
1.
目前常用的盐酸左氧氟沙星注射液含量的测定方法是高效液相色谱法,但此法不能应用于在线分析。文章利用近红外光谱分析技术分别与偏最小二乘(PLS)以及人工神经网络(ANN)的方法相结合,对同一厂家的35个不同批号的针剂样品分别建立了定量校正模型,并对随机抽取的12个样品进行了预测。首先,利用PLS的方法建立模型,得出模型的决定系数 (R2)和预测集样本的标准偏差(RMSEP)分别为0.964和0.242 8,同时利用小波变换技术对光谱变量进行了高效的压缩,并利用了前馈神经网络建立了盐酸左氧氟沙星针剂的定量分析模型, 利用该模型所得的R2和RMSEP分别为0.944和0.572 2。文章详细比较了两种方法的建模过程,相关参数选取的优化方法,实验结果令人满意,从比较结果来看,PLS方法略优于ANN方法,可以快速准确的给出该针剂的含量,具有无损,简单,快捷的特点,为近红外光谱技术应用于针剂的定量检测提供了一个新的有效方法。 相似文献
2.
芦丁和维生素C的近红外漫反射光谱技术定量分析研究 总被引:17,自引:1,他引:17
首次利用近红外漫反射技术和偏最小二乘法定量分析了复方芦丁片的主组分芦丁和维生素C混合样品的含量,所建立的预测方程对样品的预测值和真实值之间的相关系数为99.75%,芦丁和维生素C定标标准差分别为0.363%和1.078%。该方法快速、准确、不破坏样品。 相似文献
3.
4.
近红外光谱温度修正定量分析模型的研究 总被引:6,自引:3,他引:6
以小麦粉末样品为实验材料,研究了环境温度对近红外光谱定量分析结果的影响。将环境温度作为外部变量,使用不同温度下的45个样品建立了测定小麦蛋白质含量的温度修正模型,预测不同温度下的小麦样品的蛋白质含量,结果同以22 ℃恒温下45个样品建立的模型进行了比较。分析结果表明:温度修正模型的预测标准差(SEP)平均为0.333,而恒温模型(22 ℃)的预测标准差随着环境温度与建模时温度差的增大而增大,当环境温度4 ℃时,SEP=0.601 6。温度修正模型可以有效的提高近红外光谱定量分析精度。 相似文献
5.
PLS-BP法近红外光谱定量分析研究 总被引:19,自引:7,他引:19
建立BP模型用于近红外光谱定量分析时,为克服所建模型与训练样本集产生“过拟合”,先用线性算法为其压缩训练数据是必要的。目前多采用主成分法(PCA)和逐步回归法(SRA)。主成分法具有极强的压缩数据能力,用它压缩成的主成分输入BP网所建模型的预测精度一般能满足要求,但它处理数据时未考虑输出变量的影响。逐步回归法根据系统输出选择变量,但所选变量具有自相关性,而且与训练集样品的排列顺序有关,很难选出最好的变量,往往难满足预测精度要求。本研究用偏最小二乘法(PLS),根据输出变量将原始数据压缩为主成分,输入BP网并用所建模型预测30个小麦样品的蛋白质含量。结果表明,与PCA-BP模型的预测决定系数(R2)从92.50提高到97.10,训练迭代次数从12 000减少到4 500。 相似文献
6.
蚁群算法在近红外光谱定量分析中的应用研究 总被引:2,自引:0,他引:2
蚁群算法是新近发展的基于群体智能的仿生优化算法,它模拟蚂蚁的觅食行为来解决复杂的组合优化问题。蚁群算法的优点是智能搜索、全局优化、鲁棒性、分布式计算和容易与其他算法相结合等。近红外光谱定量分析技术在很多领域得到广泛的应用,而其关键技术环节之一是建立近红外光谱测量数据的多元校正模型。文章将蚁群算法应用于近红外光谱定量分析中,建立了谷物样品的傅里叶变换近红外漫反射光谱和谷物中蛋白质含量的定量分析模型,得到了较好的结果。校准集的相关系数与相对标准偏差分别为0.943和3.41%,预测集的相关系数与相对标准偏差分别为0.913和4.67%。 相似文献
7.
用近红外漫反射光谱无损检测血糖的初步研究 总被引:11,自引:0,他引:11
利用近红外漫反射光谱技术研究了无损定量监测血糖的方法。使用BRUKERVECTOR 2 2傅里叶变换光谱仪和GRACEⅡ型血糖仪对一组健康自愿受试者 (两名年轻男子和两名年轻女子 )测试后 ,获得了不同的状态条件下 2 6个样本的光谱及其血糖值 ,选择一部分有代表性的样本作为建立模型使用 ,而被预测的样本来自不参加建模的数据。选择不同的谱区、预处理方法对数据进行处理得到以下结果 :1)谱区选在 90 0 0~12 0 0 0cm- 1 选择MIN MAX归一化预处理方法建模、预测 ,预测结果差值在 36mg·dL- 1 以上 ,选择平滑和二阶导数 ,则建模结果≤ 16mg·dL- 1 ,预测结果≤ 2 5mg·dL- 1 ;另选谱区 4 0 0 0~ 5 0 0 0cm- 1 ,选择平滑和一阶导数 ,建模与预测结果的差值在 2 5mg·dL- 1 以上。 2 )选择 4 0 0 0~ 90 0 0cm- 1 谱区 ,经平滑和二阶导数处理并在此区建模并预测 ,其中建模中预测差值≤ 15mg·dL- 1 ,预测≤ 31mg·dL- 1 ;由OPU 3 0 1自动挑选的谱区6 0 0 0~ 75 0 0cm- 1 和 4 2 0 0~ 4 70 0cm- 1 ,采用平滑、一阶导数和矢量归一化在此区建模和预测 ,其中建模中预测差值≤ 11mg·dL- 1 ,预测≤ 2 2mg·dL- 1 。 3)采用个体自我建模方法 ,在 90 0 0~ 12 0 0 0cm- 1 选择平滑和二阶导数进行预处理 ,建模结果≤ 15mg 相似文献
8.
根据废旧纺织品所含成分对它们做分类回收和处理可节省大量纺织原材料。目前,在废旧纺织品的回收过程中往往使用人工分拣方法。这种方法成本高且效率低。近红外光谱分析是21世纪发展最迅速的技术之一,可以在不破坏样本的情况下快速测定样本的成分及每种成分的含量。利用该技术对废旧纺织品进行分析,预先判断废旧纺织品所含的成分及各种成分的含量,可为废旧纺织品的大规模精细分类回收提供帮助。多模型方法通过将各子模型的预测值做加权平均得到最终的预测值,用该方法建立的近红外光谱分析模型一般具有较好的稳定性。以废旧纺织品样本的锦纶含量为例,先用多模型方法建立了锦纶含量的近红外光谱分析模型。方法如下:将反射率向量按照波长划分为15组。用每组数据建立一个近红外光谱分析子模型。对子模型的预测值做加权平均得出锦纶含量的最终预测值。然后在多模型方法基础上,根据锦纶含量预测值与实验值之间的近似线性关系,通过用变量代替常量并对变量做标准化处理,给出了一种便于优化的预测锦纶含量的近红外光谱分析新模型。优化后的每个子模型中的参数比优化前减少了6个,这样可防止模型过拟合。将上述两个模型与常见的用偏最小二乘法建立的模型进行了对比。交叉验证的结果表明:(优化后的)新模型的拟合优度的平均值为0.820 7,单纯使用多模型方法所建模型的拟合优度的平均值为0.769 1,用偏最小二乘法建立的模型的拟合优度的平均值为0.746 7。因此, 使用多模型方法建立的模型的预测效果好于用偏最小二乘法建立的模型的预测效果。新模型的预测效果明显好于其他两个模型的预测效果。该研究主要创新之处是新模型的建立和优化。文中建模方法有望用于废旧纺织品样本其他成分的含量预测。 相似文献
9.
全连接网络作为深度学习中的一种典型结构,几乎在所有神经网络模型中均有出现。在近红外光谱定量分析中,光谱数据样本数量较少,但每个样本的维度高。导致了两个问题:将光谱直接输入网络,网络的参数量会十分庞大,训练模型需要更多的样本,否则模型容易进入过拟合状态;在输入网络前对光谱进行降维,虽解决了网络参数量过大的问题,但会丢失一部分信息,无法充分发挥网络的学习能力。针对近红外光谱的特性,提出了一种分组全连接的近红外光谱定量分析网络GFCN。该网络在传统的两层全连接网络的基础上,用若干个小的全连接层替代第一个全连接层,克服了直接输入光谱导致网络参数量过大的缺点。采用Tecator和IDRC2018数据集对该方法进行测试,同时与全连接网络FCN和偏最小二乘PLS两种方法进行对比。结果显示:在两个数据集上,GFCN预测效果均优于FCN和PLS。在只有少量样本参与建模的情况下,GFCN依然能够保持较高的预测效果。表明,GFCN可以用于近红外光谱的定量分析,并且适应样本较少的场景,具有重要的研究价值和广泛的应用场景。 相似文献
10.
基于近红外光谱技术的石油组分定量分析新方法 总被引:12,自引:1,他引:12
针对石油化工产品生产控制和质量检查的需要,为提高测定产品组成的效率,将近红外光谱法作为基础测定方法,以直馏柴油、加氢精制柴油和催化裂化柴油为校正模型的训练样本,测定其中饱和烃、胶质、单环芳烃、双环芳烃、三环芳烃和环烷烃的组成,论述了采用模糊神经网络建立校正模型测定石油化工产品组成的可行性。基于dSPACE硬件平台,用验证样本对模糊神经网络校正模型进行了检验,实验结果表明,该方法响应快、误差小、鲁棒性强,在近红外长波区内,校正样品和验证样品的均方误差小于10-6。该方法可用于石油化工产品的生产工艺研究中。 相似文献
11.
茶叶定性和定量近红外光谱分析方法研究 总被引:5,自引:0,他引:5
分别采集了茉莉花茶、苦丁茶、龙井和铁观音4个种类茶叶共120个样本,利用NIRSystems6500型近红外光谱分析仪对样本进行光谱测量,应用近红外光谱分析技术对茶叶进行定性和定量分析。采用主成分分析法,结合聚类分析法,对4种类别的茶叶进行定性鉴别,通过对不同光谱数据预处理方式和不确定因子系数进行比较,确立了最优定性判别定标模型。同时,采用修正的偏最小二乘法,比较不同光谱预处理方法对定标模型的影响,建立了茶叶中水分、茶多酚和咖啡碱含量的定量分析模型,并对未知样本进行预测。定性分析模型的种类识别准确率达到100%,定量分析模型的决定系数均大于0.91,相对分析误差RPD均大于3。结果表明,利用NIRS分析技术可以快速定性和定量分析鉴别茶叶的类别和成分含量。 相似文献
12.
通过提取采后不同时期的莲子、莲仁的近红外漫反射光谱特征,以莲子的可溶性固形物(SSC)和干物质含量(DM)为指标进行定量和定性分析。利用偏最小二乘回归(PLSR)分析和距离判别分析(DA)计算所得的结果表明:SSC和DM含量与莲子、莲仁的吸收光谱特征具有明显相关。莲子SSC、DM的PLSR模型在5 941~12 480 cm-1谱区综合性能较好,预测相关系数(r1)分别为0.74和82,校正相关系数(r2)分别为0.82和0.84,留一交互相关系数(r3)分别为0.72和0.71。莲仁SSC的PLSR模型在7 891~9 310 cm-1谱区综合性能较好,r1为0.79,r2为0.84,r3为0.77。DM的PLSR模型在全光谱的综合性能较好,r1为0.92,r2为0.89,r3为0.82。莲子在5 400~7 885 cm-1谱区的判别性能较好,正确率达84.2%,而莲仁在9 226~12 480 cm-1谱区的判别性能较好,正确率达90.8%。对不同年份和有膜有芯的干莲仁进行DA判别的精度可达98.9%。研究表明近红外检测技术可用于莲子和莲仁的SSC和DM含量的定量分析及储存期的定性判别,还可对不同年份和有膜有芯的干莲仁进行判别。 相似文献
13.
提出了一种基于偏最小二乘增量式神经网络的近红外光谱定量分析模型。该模型采用典型三层反向传播神经网络(BPNN),不同波长吸光度和成分浓度是模型的输入和输出。在使用历史样本训练之前先进行偏最小二乘(PLS)回归,所得自变量和因变量的历史负荷矩阵分别用于确定模型输入层和输出层的初始权值,且自变量的主成分个数作为隐层的节点数。当获得新的样本时,对新数据与历史负荷矩阵组合后进行PLS回归,将所得新的负荷矩阵与历史负荷矩阵融合后作为模型输入层和输出层新的初始权值,接着使用新样本对模型进行训练来实现增量式更新。将所提模型与PLS、BPNN、基于PLS的BPNN、递归PLS在天然气燃烧烟气近红外光谱数据上测定后比较。对于烟气中二氧化碳浓度的预测,所提模型的预测均方根误差(RMSEP)分别降低了27.27%,58.12%,19.24%和14.26%;对于烟气中一氧化碳浓度的预测,所提模型的RMSEP分别降低了20.65%,24.69%,18.54%和19.42%;对于烟气中甲烷浓度的预测,此模型的RMSEP分别降低了27.56%,37.76%,8.63%和3.20%。实验结果表明,所提模型不仅通过PLS对BPNN结构和初始权重的优化,使模型具有较强的预测能力,而且能在已建模型信息的基础上,不访问旧数据而用新增样本即可完成自身的增量式更新,从而使模型具有较好的稳健性和泛化性。 相似文献
14.
有监督主成分回归法在近红外光谱定量分析中的应用研究 总被引:5,自引:0,他引:5
介绍了运用有监督主成分回归法建立近红外光谱定量分析模型的原理和方法.利用该方法先进行近红外光谱定量分析建模的波长信息选择,达到降低光谱数据维数的目的,然后建立数学模型,并用其分析预测集样品.文中以66个小麦样品为实验材料,随机选择其中40个样品建立小麦样品中蛋白质含量的近红外光谱定量分析模型,首先优选出4个波长点:4 632,4 636,5 994,5 997 cm-1,利用这4个波长点处光谱信息建立主成分回归模型预测26个样品的蛋白质含量,其结果与凯氏定氮法分析结果的相关系数为0.991,平均相对误差为1.5%.该方法从大量光谱数据中筛选出最重要的部分波长信息,实现了"少而精"的波长点选择,对建立抗共线性信息干扰的光谱定量分析模型,同时对指导专用近红外分析仪器设计中波长点的选择等方面都有一定的意义. 相似文献
15.
近红外光谱法对甲醇柴油中甲醇含量测定 总被引:1,自引:0,他引:1
应用近红外光谱结合化学计量学方法实现了对甲醇柴油中的甲醇含量的定量分析。以实验室配制的32种不同浓度[浓度范围为2%~25.8%(φ)]的甲醇柴油溶液为研究对象,在4 500~7 000 cm-1光谱范围内,建立偏最小二乘(PLS)、支持向量机(SVM)和最小二乘支持向量机(LS-SVM)三种定量分析模型。在建立SVM模型时,经过比较分析,径向基函数(radial basis function,RBF)作为SVM模型的核函数时可以获得更高的预测精度。最终获得甲醇含量的PLS, SVM和LS-SVM三种模型的预测相关系数RP分别为0.985 9, 0.990 3, 0.998 9,预测均方根误差RMSEP分别为0.405 2, 0.356 3, 0.062 4,可以看出,三种预测模型都可以达到很好的效果,最优的预测模型是使用LS-SVM建模。研究结果表明,利用近红外光谱法结合化学计量学方法对甲醇柴油中甲醇含量的检测具有可行性,并可以达到很好的效果。采用近红外光谱技术结合化学计量方法对甲醇柴油中甲醇含量进行定量分析,也为近红外光谱技术快速无损检测甲醇柴油甲醇含量提供参考和应用价值。 相似文献
16.
以东北三省6个产地的74份人参样品为研究对象,采集其近红外光谱,以多元散射校正原始光谱;采用超高效液相色谱技术,建立样品中人参皂苷Rg1,Rb1,Re的含量测定方法,以样品中这三种皂苷的总量作为参考值,在6 001~4 007和10 000~8 786 cm-1建模区间,采用偏最小二乘法建立了人参样品中人参皂苷近红外定量模型,交叉验证均方根误差为0.115,预测均方根误差为0.167,相关系数分别为0.947 7和0.915 3。同时对近红外原始光谱进行多元散射校正和Savitzky-Golay平滑处理,以8 531~7 559 cm-1谱段对人参样品进行产地识别,结果表明,74份样品可分为3类,分别对应辽宁、吉林和黑龙江产区,校正模型判正率为96%,预测模型判正率达90%。2010版《中国药典》以人参样品中人参皂苷Rg1,Rb1,Re的总量作为评价人参质量的化学指标,该工作所建立的近红外预测人参样品三种皂苷总量的方法快速、准确,可用以评价人参样品的质量。 相似文献