首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Dimethyl 1-hexene-2,5-dicarboxylate (MMAD), a methyl methacrylate dimer, which is an acrylic ester bearing a large α-substituent, was polymerized and copolymerized. During the bulk polymerization at room temperature, an ESR spectrum assigned to the propagating radical was observed. MMAD which polymerized much slower than methyl methacrylate (MMA) was less reactive in copolymerization than MMA. These findings may exemplify that slow propagation concomitant with termination suppressed with steric hindrance could lead to polymer formation of MMAD. Thermogravimetric analysis of poly(MMAD) exhibited that the degadation through depropagation was facilitated by the α-substituent. A relatively large chain transfer constant of MMAD in MMA polymerization, 9.8 × 10?3, was evaluated consistent with a considerable decrease in the molecular weight of poly (MMA) in the presence of a small amount of MMAD.  相似文献   

2.
The polymerization of vinyl monomers initiated with the system of polyvinylferrocene (PVFc) and carbon tetrachloride (CCl4) was carried out in dark. Methyl methacrylate (MMA) and acrylonitrile (AN) could be polymerized, while styrene (St) was hardly polymerized under the conditions used. The polymerization proceeded through a free-radical mechanism and was concluded to be initiated by attack of vinyl monomer, having a polarized vinyl group, on the charge-transfer complex of PVFc/CCl4. In the polymerization of MMA, the initiating ability of PVFc was much larger than that of ferrocene (Fc-H) or poly(ferrocenylmethyl methacrylate) (PFMMA) and was comparable to that of polyferrocenylenemethylene (PFM). The overall activation energy was estimated to be 34.2 kJ/mole.  相似文献   

3.
Poly(2-hydroxyethyl methacrylate)(PHEMA)and poly(2-hydroxyethyl methacrylate-co-sodium methacrylate) [P(HEMA-co-SMA)]hydrogels with different compositions were prepared to be used as intravaginal rings,and their gelation time,water content,mechanical properties and morphology were investigated.The water content of PHEMA and P(HEMA-co-SMA) hydrogels decreased as the concentration of the monomer and the degree of crosslinking increased,while the water content significantly increased as the content of SMA,t...  相似文献   

4.
An acrylate-based pressure sensitive adhesive (PSA) was synthesized to incorporate in a design of a drug-in-adhesive (DIA) type transdermal therapeutic system (TTS) for nitrendipine and nicorandil in treatment of hypertension and angina pectoris, respectively. Solutions of 2-ethylhexyl acrylate (EHA; 85% w/w), methyl methacrylate (MMA; 10% w/w), acrylic acid (AA; 3% w/w) and vinyl acetate (VA; 2% w/w) in either ethyl acetate, acetone or methanol were polymerized under free radical conditions to synthesize the PSA. The effects of solvent, reaction time, initiator concentration and reaction temperature on polymerization were studied. The resultant copolymers were characterized by 1H-NMR, IR, differential scanning calorimetry (DSC) and gel permeation chromatography (GPC) and the intrinsic viscosities, refractive index, peel strength, moisture uptake and skin irritation potential were determined. The PSA was used to develop DIA type patches for delivery of nitrendipine and nicorandil. The TTS were evaluated for thickness, weight, peel strength, moisture uptake, in vitro release and in vitro skin permeation through guinea-pig skin. The copolymer found to effectively control the rate of drug release and the corresponding TTSs could be successfully employed in transdermal delivery of nitrendipine and nicorandil. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

5.
The copolymers of methyl methacrylate (MMA) (or styrene (ST))/stearyl methacrylate (SMA) obtained from miniemulsion polymerization were prepared and characterized. All the miniemulsions showed satisfactory colloidal stability upon aging due to the effectively retarded Ostwald ripening by the reactive costabilizer SMA. In subsequent miniemulsion copolymerizations, monomer droplet nucleation predominated in the particle formation process, but homogeneous nucleation could not be ruled out even at such high levels of SMA (20–50 wt.%). The contact angle first increased rapidly and then leveled off when the SMA content increased from 20 to 50 wt.% for both the copolymers of MMA/SMA and ST/SMA. At constant level of SMA, the copolymer of MMA/SMA with a less hydrophobic composition showed a larger contact angle compared to the ST/SMA counterpart. The contact angle (103 ± 1°) of the copolymer MMA/SMA (50/50 w/w) was comparable to that (104°) of PSMA. A schematic model was proposed to explain the experimental results.  相似文献   

6.
Several γ-alkoxy-β-hydroxypropyl acrylates were synthesized and polymerized. Both poly(MHPA) (IVd) and poly(MHPMA) (IVa) hydrogels possess high values of equilibrium water content, about seven and three times, respectively, that of the poly(β-hydroxyethyl methacrylate) hydrogel. These rather high values are attributed tentatively to the presence of a hydrophilic γ-methoxy-β-hydroxypropyl side group on the acrylic backbone.  相似文献   

7.
Hydroxyethyl methacrylate and hydroxypropyl methacrylate (both having extremely high solubilities in water) were polymerized in aqueous medium to obtain the respective polymer latices with a solid content as high as 10 wt.-%. The initial state of the polymerization is in solution rather than in dispersion, and the polymer product is sparingly soluble in the aqueous phase. The polymerization was carefully controlled to avoid forming hydrogel by using an oil soluble initiator and a mixture of sodium dodecyl sulfate and poly(vinyl alcohol). Solubilities of both monomers and polymers in water were also investigated.  相似文献   

8.
氟硅协同改性丙烯酸树脂的合成与防污性能研究   总被引:1,自引:0,他引:1  
以甲基丙烯酸十二氟庚酯(FMA)、甲基丙烯酸聚二甲基硅氧烷基酯(SMA)、甲基丙烯酸甲酯、丙烯酸正丁酯、甲基丙烯酸正丁酯和丙烯酸乙酯为共聚单体,通过溶液聚合反应合成出侧链含有机氟、有机硅的丙烯酸树脂.通过核磁共振氢谱(1H-NMR)、核磁共振氟谱(19F-NMR)、红外光谱(FTIR)对聚合物的结构进行了表征.通过扫描电镜(SEM)、接触角测试和生物评价等方法,探讨了FMA、SMA含量对树脂涂膜性能的影响.结果表明氟硅改性的丙烯酸树脂比单独含氟或含硅改性的丙烯酸树脂具有更低的表面能,而且氟硅改性的丙烯酸树脂涂膜比商业化的聚硅氧烷涂膜具有更好的防污性能.  相似文献   

9.
《印度化学会志》2021,98(11):100220
The water crisis is increased everywhere in recent years, which has affected the water demand in different sectors like industries, agriculture, residential, etc. The present research aims to the development of superabsorbent polymer (SAP) using bio-material. The hydrogel is synthesized by grafting Guar gum (GG) with methyl methacrylate (MMA) and crosslinking with polyethylene glycol (PEG). The developed GG-based hydrogelwas characterized by various analytical instruments. The Scanning Electron Microscopy (SEM) demonstrated hydrogels havepores of size 50 ​μm–10 ​μm. The Transmission Electron Microscopy (TEM) analysis has shownthat thematerial consists of spherical shapesand particles of size 141.11nm–182.19 ​nm.The Fourier-Transform Infrared Spectroscopy (FTIR) and Thermogravimetric analysis (TGA) study have confirmedthepresence of functional groups of material, and thermal resistivity. The absorption capacity of developed hydrogelwas found to be 110 ​ml per gram (110% of its dry weight). The hydrogelwasapplied in the field of sugarcane crop and measured soil moisture content after 20 days of application. A better resultwas found of moisture content in the area of hydrogel application (28%) compared to the area without hydrogel application (10%). Moreover, the comparison of different hydrogels is also shown in a study, and the developed hydrogel proves good moisture retention capacity. This technology could be promising in terms of improving perennial crop productivity and combating moisture stress in agriculture. As a soil conditioning material for agricultural applications, the synthesized hydrogel showed tremendous potential.  相似文献   

10.
In the present study, biocomposite films of starch/poly(vinyl alcohol) (St/PVA) reinforced with delignified Grewia optiva fiber and methyl methacrylate (MMA) grafted fibers were prepared using citric acid as a plasticizer and glutaraldehyde as the cross-linker. The biocomposite films were subjected to evaluation of mechanical properties, biodegradability, and antibacterial properties. The biocomposite films were characterized by using Fourier transform-infrared (FT-IR) spectrophotometry, scanning electron microscopy (SEM), and thermogravimetric analysis (TGA/DTA/DTG). SEM showed good adhesion between St/PVA blend matrix and fibers. The antimicrobial activity of biocomposite films against pathogenic bacteria such as Staphylococcus aureus and Escherichia coli was also explored. The results confirmed that the biocomposite films may be used for food packaging.  相似文献   

11.
Methyl methacrylate(MMA) polymerized in the presence of a new homogeneous catalyst of Y(acac)3-(i-Bu)3Al-BuLi. The effects of MMA/Y, Al/Y, Li/Y molar ratios, polymerization temperature and time are reported. The results show that a small amount of butyl lithium could greatly enhance the activity of the catalyst and the polymerization reaction could be carried out at low temperatures (-25℃-10℃) with a high conversion. 200 kg of poly(methyl methacrylate) (PMMA) with 63% syndiotacticity could be prepared by using 1 mole of yttrium.  相似文献   

12.
Butyl vinyl ether (BVE) and methyl methacrylate (MMA) mixtures were polymerized by using free radical initiators in conjunction with a cationic initiator such as diphenyl iodonium salt. Polymerization mechanism involves free radical polymerization of MMA which is switched to cationic polymerization of BVE by addition of growing poly(MMA) radicals to BVE and subsequent oxidation of electron donating polymeric radicals to the corresponding cations by iodonium ions. Two representative bifunctional monomers, ethylene glycol divinyl ether (EGDVE) and ethylene glycol dimethacrylate (EGDMA) were also used together with MMA and BVE, respectively, in photo and thermal crosslinking polymerizations. Vinyl ether and methacrylate type monomers can successfully be copolymerized by this double-mode polymerization under photochemical conditions.  相似文献   

13.
N-methylacrylamide (NMAAm) and N-methylmethacrylamide (NMMAm) were polymerized to give polymer microspheres containing living propagating radicals. The microsphere polymer radicals were allowed to react with some binary mixtures of vinyl monomers including alternating copolymerization combinations. The reaction processes were investigated by ESR spectroscopy. In the poly(NMMAm) radical/methyl methacrylate (MMA)/styrene (St) system, the propagating radical from MMA was mainly observed at the higher MMA concentration, while polySt radical prevailed at the lower MMA concentration. In the poly(NMMAm) radical/α-methylstyrene (α-MeSt)/diethyl fumarate system, the α-MeSt radical was exclusively observed, while the maleic anhydride (MAn) radical was predominantly observed in the α-MeSt/MAn system. In the MAn/diphenylethylene system, the propagating radicals from both monomers were observed at comparable concentrations. The poly(NMAAm) microsphere radical behaved differently in the reaction with the MMA/St mixture. The poly(NMAAm) microsphere was found to incorporate preferentially St, leading to formation of the St radical. The St preference was enhanced in the St/cyclohexyl methacrylate (CHMA) system. These results were in agreement with those of block copolymerization via the reaction of poly(NMAAm) radical with the MMA/St or CHMA/St mixture, where the compositions of the resulting polymers were analyzed by pyrolysis gas chromatography.  相似文献   

14.
本文旨在用DSC的方法研究水凝胶结合水的能力与韧性的关系。 分别以甲基丙烯酸丁酯(BMA)或甲基丙烯酸六氟丁酯(HFBMA)和烯丙基胺为单体,制备了2种核壳纳米微球(BMA微球和HFBMA微球)。 再以其作为大分子引发剂和交联剂,制备了微球交联复合水凝胶(BMA-H凝胶和HFBMA-H凝胶)。 通过差示扫描量热仪(DSC)、傅里叶变换红外光谱仪(FTIR)和透射电子显微镜(TEM)等技术手段研究凝胶的结构和性能。 结果表明,HFBMA-H凝胶具有更好的机械性能,其拉伸强度和断裂伸长率分别可达280 kPa和3960%,远高于BMA-H凝胶(101 kPa,2700%)。 通过对2种复合凝胶体系内不同状态的水进行分析,发现HFBMA-H凝胶的非冻结水的质量分数明显高于BMA-H凝胶,这种非冻结水的增塑作用对于凝胶机械强度的提升具有重要影响。  相似文献   

15.
Well‐defined, core‐shell poly(methyl methacrylate) (PMMA)/casein nanoparticles, ranging from 80 to 130 nm in diameter, were prepared via a direct graft copolymerization of methyl methacrylate (MMA) from casein. The polymerization was induced by a small amount of alkyl hydroperoxide (ROOH) in water at 80 °C. Free radicals on the amino groups of casein and alkoxy radicals were generated concurrently, which initiated the graft copolymerization and homopolymerization of MMA, respectively. The presence of casein micelles promoted the emulsion polymerization of the monomer and provided particle stability. The conversion and grafting efficiency of the monomer strongly depended on the type of radical initiator, ROOH concentration, casein to MMA ratio, and reaction temperature. The graft copolymers and homopolymer of PMMA were isolated and characterized with Fourier transform infrared spectroscopy and differential scanning calorimetry. The molecular weight determination of both the grafted and homopolymer of PMMA suggested that the graft copolymerization and homopolymerization of MMA proceeded at a similar rate. The transmission electron microscopic image of the nanoparticles clearly showed a well‐defined core‐shell morphology, where PMMA cores were coated with casein shells. The casein shells were further confirmed with a zeta‐potential measurement. Finally, this synthetic method allowed us to prepare PMMA/casein nanoparticles with a solid content of up to 31%. Thus, our new process is commercially viable. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 3346–3353, 2003  相似文献   

16.
The combination of precision-controlled weight loss measurements and spectroscopic surface FT-IR analysis allowed us to identify unique behaviors of poly(methyl methacrylate) (p-MMA). When MMA and n-butyl acrylate (nBA) are polymerized into p-MMA and p-nBA homopolymer blends, MMA/nBA random copolymers, and p-MMA/p-nBA core-shell morphologies, a controlled mobility and stratification of low molecular weight components occurs in films formed from coalesced colloidal dispersions. Due to different affinities toward water, p-MMA and p-nBA are capable of releasing water at different rates, depending upon particle morphological features of initial dispersions. As coalescence progresses, water molecules are released from the high free volume p-nBA particles, whereas p-MMA retains water molecules for the longest time due to its hydrophilic nature. As a result, water losses at extended coalescence times are relatively small for p-MMA. MMA/nBA copolymer and p-MMA/p-nBA blends follow the same trends, although the magnitudes of changes are not as pronounced. The p-MMA/p-nBA core-shell behavior resembles that of p-nBA homopolymer, which is attributed to significantly lower content of the p-MMA component in particles. Annealing of coalesced colloidal films at elevated temperatures causes migration of SDOSS to the F-A interface, but for films containing primarily p-nBA, reverse diffusion back into the bulk is observed. These studies illustrate that the combination of different particle morphologies and temperatures leads to controllable permeation processes through polymeric films.  相似文献   

17.
A novel approach for the surface modification of poly(vinylidene fluoride)(PVDF)membrane was successfully realized through alkaline treatment,UV-induced bromine addition,and followed by surface-initiated atom transfer radical polymerization(ATRP)of methyl methacrylate(MMA).Chemical changes on the PVDF membrane before and after modification were analyzed with attenuated total reflectance Fourier transform infrared spectroscopy(ATR/FT-IR)and X-ray photoelectron spectroscopy(XPS).Primary kinetic study revea...  相似文献   

18.
A novel approach for the surface modification of poly(vinylidene fluoride)(PVDF)membrane was successfully realized through alkaline treatment,UV-induced bromine addition,and followed by surface-initiated atom transfer radical polymerization(ATRP)of methyl methacrylate(MMA).Chemical changes on the PVDF membrane before and after modification were analyzed with attenuated total reflectance Fourier transform infrared spectroscopy(AIR/Fr-IR)and X-ray photoelectron spectroscopy(XPS).Primary kinetic study revealed that the chain growth of poly(methyl methacrylate)(PMMA)from the PVDF surface is consistent with a"controlled"process.  相似文献   

19.
The atom transfer radical polymerization of methyl methacrylate (MMA) and n‐butyl methacrylate (n‐BMA) was initiated by a poly(ethylene oxide) chloro telechelic macroinitiator synthesized by esterification of poly(ethylene oxide) (PEO) with 2‐chloro propionyl chloride. The polymerization, carried out in bulk at 90 °C and catalyzed by iron(II) chloride tetrahydrate in the presence of triphenylphosphine ligand (FeCl2 · 4H2O/PPh3), led to A–B–A amphiphilic triblock copolymers with MMA or n‐BMA as the A block and PEO as the B block. A kinetic study showed that the polymerization was first‐order with respect to the monomer concentration. Moreover, the experimental molecular weights of the block copolymers increased linearly with the monomer conversion, and the molecular weight distribution was acceptably narrow at the end of the reaction. These block copolymers turned out to be water‐soluble through the adjustment of the content of PEO blocks (PEO content >90% by mass). When the PEO content was small [monomer/macroinitiator molar ratio (M/I) = 300], the block copolymers were water‐insoluble and showed only one glass‐transition temperature. With an increase in the concentration of PEO (M/I = 100 or 50) in the copolymer, two glass transitions were detected, indicating phase separation. The macroinitiator and the corresponding triblock copolymers were characterized with Fourier transform infrared, proton nuclear magnetic resonance, size exclusion chromatography analysis, dynamic mechanical analysis, and differential scanning calorimetry. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 5049–5061, 2005  相似文献   

20.
The properties of surface‐ and bulk‐modified poly(dimethylsiloxane) (PDMS) were examined. Laser‐induced surface grafting of poly(2‐hydroxyethyl methacrylate) (PHEMA) on PDMS and a sequential method for preparation of interpenetrating polymer networks of PDMS/PHEMA were, respectively, used for surface and bulk modifications. The hydrogel content and water‐uptake capability of the modified samples were also investigated. The modified PDMS samples were examined by performing attenuated total reflection/Fourier transform infrared spectroscopy, dynamic mechanical thermal analysis, scanning electron microscopy, and water contact‐angle measurements. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 2145–2156, 2003  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号