共查询到20条相似文献,搜索用时 10 毫秒
1.
The kinetics of polymerization of ethylene glycol and 1,6-hexanediol dimethacrylates in the presence of branched and linear PMMAs, 1-decanethiol, and methylphenyl sulfide has been studied by isothermal calorimetry. The sol-gel analysis of 1,6-hexanediol polydimethacrylates prepared in the absence and presence of the branched PMMA is performed. The effect of the branched PMMA on the diffusion-sorption, mechanical, thermomechanical, and optical properties of polydimethacrylates is investigated. It has been established that, in the crosslinking free-radical polymerization of dimethacrylates, the branched PMMA serves both as a reactive macromonomer and a chemically inert additive—polymer filler. 相似文献
2.
Yoshiki Chujo Tetsuya Nakamura Yuya Yamashita 《Journal of polymer science. Part A, Polymer chemistry》1990,28(1):59-65
Mercapto-16-crown-5 was prepared starting from tetraethyleneglycol and 3-chloro-2-chloromethyl-1-propene. Radical polymerization of methyl methacrylate was carried out in the presence of mercapto-16-crown-5 as a chain transfer agent to give crown ether-terminated poly(methyl methacrylate). The end crown group was characterized by IR and 1H-NMR spectra. Sodium cation was selectively extracted by this crown-containing polymer. The molecular weight of the obtained polymer had influence upon the ability of extraction of sodium cation. 相似文献
3.
Toyoji Kakuchi Atsushi Kusuno Minako Shibata Takeshi Nakato 《Macromolecular rapid communications》1999,20(8):410-414
The polycondensation of aspartic acid in the presence of phthalic anhydride was carried out in mesitylene/sulfolane using o-phosphoric acid as a catalyst. The polymer yields were 91–78%, when 5–20 mol-% phthalic anhydride was added into the feed. The obtained poly(succinimide) carried a phthalic imide unit and a succinic acid unit as end groups. In the MALDI-TOF mass spectrum, the peak-to-peak distances between adjacent signals were 97.07 m/z, corresponding to the calculated value (97.07) of the succinimide unit. Poly(succinimide) was reacted with 2-(methacryloxy)ethyl isocyanate to give end-methacrylated poly-(succinimide), in which the end-functionality of the methacrylate group was ca. 1. End-methacrylated poly-(succinimide) was polymerized with ethylene glycol dimethacrylate using 2,2′-azoisobutyronitrile to give poly(succinimide) gel, which could be converted into water-absorbing poly(aspartic acid) hydrogel. 相似文献
4.
Poly(vinyl acetate-methyl methacrylate) (VAc-MMA) copolymer microspheres were prepared using suspension polymerization at low temperature initiated with 2,2'-azobis(2,4-dimethyl valeronitrile) (ADMVN). The poly(VAc-MMA) copolymer microspheres can be used over a large area where homopolymers, polyvinyl acetate (PVAc) and methyl methacrylate (PMMA) microspheres are capable of being put to use. The prepared microspheres were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), differential scanning calorimetry (DSC) and thermal gravimetric analysis (TGA). Obtained copolymer microspheres which have 200 μm average diameter and higher thermal stability than those of homopolymer. 相似文献
5.
Jos Luis de la Fuente Marta Fernndez‐García Marina Fernndez‐Sanz Enrique Lpez Madruga 《Journal of polymer science. Part A, Polymer chemistry》2001,39(19):3443-3450
Pyridine was used as a solvent for the atom transfer radical polymerization (ATRP) of methyl methacrylate. The homopolymerizations were carried out with methyl 2‐halopropionate (MeXPr, where X was Cl or Br) as an initiator, copper halide (CuX) as a catalyst, and 2,2′‐bipyridine as a ligand from 80 to 120 °C. The mixed halogen system methyl 2‐bromopropionate/copper chloride was also used. For all the initiator systems used, the polymerization reaction showed linear first‐order rate plots, a linear increase in the number‐average molecular weight with conversion, and relatively low polydispersities. In addition, the dependence of the polymerization rate on the temperature is presented. These data are compared with those obtained in bulk, demonstrating the effectiveness of this solvent for this monomer in ATRP. © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 39: 3443–3450, 2001 相似文献
6.
Daniel Hork Pavlo Shapoval 《Journal of polymer science. Part A, Polymer chemistry》2000,38(21):3855-3863
Poly(glycidyl methacrylate) [poly(GMA)] microspheres of narrow size distribution were prepared in a simple one‐step procedure by dispersion radical polymerization. Depending on the solvent used, poly(GMA) particle size could be controlled in the range of 0.5–4 μm by changing the solubility parameter of the reaction mixture. In N,N′‐dimethylformamide (DMF)/methanol mixture, the particle size increased and the size distribution broadened with decreasing initial solubility parameter. While in the DMF/methanol solvent system, hydroxypropyl cellulose (HPC) or cellulose acetate butyrate (CAB) were taken as steric stabilizers of the dispersion polymerization, poly(vinylpyrrolidone) (PVP) was used in alcoholic media. Contrary to the DMF/methanol system, narrow particle size distributions were obtained with PVP‐stabilized polymerizations in ethanolic, methanolic, propan‐1‐olic or butan‐1‐olic medium. Both the particle size and polydispersity were reduced with increasing stabilizer concentration. If lower molecular‐weight PVP was used, larger microspheres were obtained. Poly(GMA) samples prepared in a neat alcoholic medium virtually quantitatively retained oxirane group content after the polymerization. Reactivity of the poly(GMA) microspheres was confirmed by their hydrolysis and aminolysis. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 3855–3863, 2000 相似文献
7.
8.
Gue Seon Lee Jeung Gon Kim 《Journal of polymer science. Part A, Polymer chemistry》2020,58(10):1450-1455
Highly efficient syntheses of poly(alkyl methacrylate)-based brush polymers were accomplished via a facile group transfer polymerization (GTP) and a consecutive grafting-through ring-opening metathesis polymerization. The GTP system, composed of the norbornenyl-methyl trimethylsilyl ketene acetal initiator and the N-(trimethylsilyl) bis(trifluoromethanesulfonyl)imide catalyst, rapidly and quantitatively generates norbornenyl-terminated poly(alkyl methacrylate) macromonomers with very narrow polydispersities (Mw/Mn < 1.10). The ring-opening metathesis polymerization of methacrylate macromonomers using Grubbs third generation catalyst successfully generated a group of methacrylate-based brush polymers, which assured the high quality of the macromonomers obtained from GTP. 相似文献
9.
In this report, a method based on the redox-initiated polymerization of methyl methacrylate (MMA) has been developed for the rapid fabrication of poly(methyl methacrylate) (PMMA) microfluidic chips. MMA containing 2-2'-azo-bis-isobutyronitrile was allowed to prepolymerize in a water bath to form a viscous prepolymer solution that was subsequently mixed with MMA containing a redox-initiation couple of benzoyl peroxide/N,N-dimethylaniline. The dense molding solution was sandwiched between a silicon template and a piece of 1-mm-thick PMMA plate. The polymerization could complete within 50 min under ambient temperature. The images of raised microfluidic structures on the silicon template were precisely replicated into the synthesized PMMA substrate during the redox-initiated polymerization of the molding solution. The chips were subsequently assembled by the thermal bonding of the channel plates and the covers. The new fabrication approach obviates the need for special equipment and significantly simplifies the process of fabricating PMMA microdevices. The attractive performance of the novel PMMA microchips has been demonstrated in connection with contactless conductivity detection for the separation and detection of ionic species. 相似文献
10.
Miguel F. Refojo 《Journal of polymer science. Part A, Polymer chemistry》1967,5(12):3103-3113
Homogeneous poly(2-hydroxyethyl methacrylate) (PHEMA) hydrogel exhibits a narrow range of swelling at equilibrium in water (% H2O, 41.09 ± 0.15 standard error of the mean of 24 samples), regardless of the dilution of the monomer solution and relatively low level of crosslinking. It is postulated that PHEMA hydrogel has, in addition to its covalently linked network structure, a secondary structure stabilized by hydrophobic bonding. The addition of microsolutes to the hydrogel seems to confirm this hypothesis. The hydrogel swells beyond its swelling equilibrium in water in presence of urea and its methyl derivatives. Swelling is also induced by organic solvents like alcohol and acetone, and by anions like iodide, acetate, trichloroacetate, and thiocyanate. Chlorides and sulfates produce a less swollen hydrogel than pure water, while bromides and cetylpyridinium chloride, in the concentrations tested, induce only a slight deswelling of the gel. When PHEMA gel prepared in organic solvent–water solutions is placed in water, the gel passes through an opaque state before becoming transparent again. This phenomenon is interpreted as being caused by the inability of water to solvate the hydrophilic ends of the unorganized polymer segments. Homogeneity returns to the gel after a rearrangement of the chains, directed by the interaction of the hydrophobic portions of the polymer segments, exposing to the solvent–water most of the hydrophilic sites in the network. 相似文献
11.
Synthesis of poly(methyl methacrylate) nanocomposites via emulsion polymerization using a zwitterionic surfactant 总被引:1,自引:0,他引:1
The synthesis of nanocomposites via emulsion polymerization was investigated using methyl methacrylate (MMA) monomer, 10 wt % montmorillonite (MMT) clay, and a zwitterionic surfactant octadecyl dimethyl betaine (C18DMB). The particle size of the diluted polymer emulsion was about 550 nm, as determined by light scattering, while the sample without clay had a diameter of about 350 nm. The increase in the droplet size suggests that clay was present in the emulsion droplets. X-ray diffraction indicated no peak in the nanocomposites. Transmission electron microscopy showed that emulsion polymerization of MMA in the presence of C18DMB and MMT formed partially exfoliated nanocomposites. Differential scanning calorimetry showed an increase of 18 degrees C in the glass transition temperature (Tg) of the nanocomposites. A dynamic mechanical thermal analyzer also verified a similar Tg increase, 16 degrees C, for the partially exfoliated nanocomposites over poly(methyl methacrylate) (PMMA). Thermogravimetric analysis indicated a 37 degrees C increase in the decomposition temperature for a 20 wt % loss. A PMMA nanocomposite with 10 wt % C18DMB-MMT was also synthesized via in situ polymerization. This nanocomposite was intercalated and had a Tg 10 degrees lower than the emulsion nanocomposite. The storage modulus of the partially exfoliated emulsion nanocomposite was superior to the intercalated structure at higher temperatures and to the pure polymer. The rubbery plateau modulus was over 30 times higher for the emulsion product versus pure PMMA. The emulsion technique produced nanocomposites of the highest molecular weight with a bimodal distribution. This reinstates that exfoliated structures have enhanced thermal and mechanical properties over intercalated hybrids. 相似文献
12.
Cross-linked poly(methyl methacrylate) particles were prepared via dispersion polymerization in supercritical carbon dioxide
(scCO2) using poly(heptadecafluorodecyl methacrylate) (PHDFDMA) and 2,2′-azobisisobutyronitrile as the dispersant and the initiator,
respectively. The following chemicals were used as cross-linking agents: ethylene glycol dimethacrylate (EGDMA), 1,4-buthanediol
di(meth)acrylate (1,4-BD(M)A), and trimethylolpropane trimethacrylate. PHDFDMA was synthesized by solution polymerization
in scCO2. We investigated the effect of the chemical structure, concentration of the cross-linking agents, reaction pressure, and
CO2 density on the morphology, the polydispersity, and the cross-linking density of polymer particles. The resulting polymer
particle was characterized by field emission SEM, differential scanning calorimetry, and thermal gravimetric analysis. The
cross-linked PMMA particles is more agglomerate as the cross-linking agent concentration increased and as pressure decreased
at constant temperature. Glass-transition temperature (T
g) of the resulting polymer increased as the cross-linking agent increased with temperature and pressure increasing at the
same CO2 density. Decomposition temperature is slightly increased as 1,4-BDA concentration increased. From these results, we can confirm
that the thermal stability of the polymer increased as the cross-linking agent and EGDMA is the best cross-linking agent in
term of the thermal stability. 相似文献
13.
14.
B. B. Troitskii L. V. Khokhlova V. N. Denisova M. A. Novikova A. E. Golubev A. V. Arapova 《Russian Journal of Applied Chemistry》2007,80(9):1575-1578
Emulsifier-free emulsion polymerization of methyl methacrylate in the presence of potassium persulfate initiator, taken in several different concentrations, at various pH values was studied with the aim to obtain colloidal crystals. The thermal properties of poly(methyl methacrylate) prepared by emulsifier-free emulsion polymerization, as the starting material for fabrication of photonic crystals, were examined in relation to the synthesis conditions. 相似文献
15.
Koji Ishizu Takashi Fukutomi 《Journal of polymer science. Part A, Polymer chemistry》1989,27(4):1259-1266
Anionic polymerization of methyl methacrylate (MMA) was carried out in tetrahydrofuran (THF) or THF/toluene mixture at ?78°C initiated by triphenylmethyl sodium or lithium as initiators. Highly syndiotactic PMMA of low polydispersity (M w/m n = 1.11–1.17) could be prepared with triphenylmethyl lithium in THF or THF/toluene mixture at ? 78°C. Moreover, PMMA macromonomer having one vinylbenzyl group per polymer chain was prepared by the couplings of living PMMA initiated by triphenylmethyl lithium with p-chloromethyl styrene (CMS) at ?78°C. The coupling reaction of living PMMA initiated by triphenylmethyl sodium with CMS was scarcely occurred. 相似文献
16.
Weon-Jung Choi Yang-Bae Kim Soon-Ki Kwon Kwon-Taek Lim Sam-Kwon Choi 《Journal of polymer science. Part A, Polymer chemistry》1992,30(10):2143-2148
Different poly(tert-butyl methacrylate) (PTBMA)-poly(alkyl methacrylate) (PAMA, alkyl=CH3, n-C4H9) triblock copolymers were synthesized by group transfer polymerization. They were obtained by first preparing “living” PAMA using a difunctional initiator, followed by polymerization of TBMA in THF at room temperature, in the presence of a nucleophilic catalyst. The segment molecular weights and compositions of TBMA segment could be controlled by regulating the feed ratio of two monomers and the ratio of monomer to initiator. As supported by 1H-NMR, IR analysis, and titration, the PTBMA blocks could be quantitatively hydrolyzed into poly(methacrylic acid) (PMAA) blocks whereas the PAMA blocks were not hydrolyzed. The water-soluble amphiphiles prepared by neutralization of the PMAA block displayed surface-active behavior in water, which was characterized by a critical micelle concentration. The thermogravimetric analysis demonstrated the loss of tert-butyl groups. © 1992 John Wiley & Sons, Inc. 相似文献
17.
N. A. A. Rossi R. G. Jones S. J. Holder 《Journal of polymer science. Part A, Polymer chemistry》2003,41(1):30-40
ABA block copolymers of methyl methacrylate and methylphenylsilane were synthesized with a methodology based on atom transfer radical polymerization (ATRP). The reaction of samples of α,ω‐dihalopoly(methylphenylsilane) with 2‐hydroxyethyl‐2‐methyl‐2‐bromoproprionate gave suitable macroinitiators for the ATRP of methyl methacrylate. The latter procedure was carried out at 95 °C in a xylene solution with CuBr and 2,2‐bipyridine as the initiating system. The rate of the polymerization was first‐order with respect to monomer conversion. The block copolymers were characterized with 1H NMR and 13C NMR spectroscopy and size exclusion chromatography, and differential scanning calorimetry was used to obtain preliminary evidence of phase separation in the copolymer products. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 30–40, 2003 相似文献
18.
Enzo Giannetti Romano Mazzocchi Leonardo Fiore Francesco Visani 《Journal of polymer science. Part A, Polymer chemistry》1986,24(10):2517-2551
Suspension free-radical polymerization of vinyl monomers, carried out in the presence of alkyl mercaptans as chain-transfer agents, is analyzed. A model which accounts for the development with conversion of the polymer weight fractions having particularly tagged end groups, namely sulfur-containing and unsaturated end groups, is presented. The best current theories for diffusion-controlled polymerizations are included in the model. The sulfur content of poly(methyl methacrylate), determined as a function of conversion by a microcoulometric method, is in good agreement with the values predicted from polymerization kinetics. The rate of weight loss of the produced polymers is then related to the content of the unsaturated end groups. By comparing experimental thermal stability indexes (from thermogravimetry and isothermal heating experiments) to calculated polymer weight fractions, it is shown that the thermal stability of poly(methyl methacrylate) produced in the presence of alkyl mercaptans approximately depends on the square of the weight fraction of the polymer chains with an unsaturated end group. 相似文献
19.
20.
Akira Matsumoto 《Macromolecular Symposia》2002,179(1):141-152
In the emulsion polymerization of allyl methacrylate (AMA), the reactive crosslinked polymer microspheres or microgel-like polymers with abundant pendant allyl groups were easily obtained because AMA possesses two types of vinyl groups, methacrylic and allylic double bonds, having greatly different reactivities. The resulting microgel-like poly(allyl methacrylate) microspheres (PAMA microspheres) were characterized by light scattering and viscometry. Then, the characteristic polymerization behaviour of PAMA microspheres was explored by the copolymerizations with diallyl terephthalate (DAT) and allyl benzoate (ABz). 相似文献