首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Simultaneous measurements of species volume concentration and velocities in a helium/air binary gas jet with a jet Reynolds number of 4,300 and a jet-to-ambient fluid density ratio of 0.64 were carried out using a laser/hot-wire technique. From the measurements, the turbulent axial and radial mass fluxes were evaluated together with the means, variances and spatial gradients of the mixture density and velocity. In the jet near field (up to ten diameters downstream of the jet exit), detailed measurements of u/ 0 U 0, v/ 0 U0, u v/ 0 U 0 2 , u 2 / 0 U 0 2 and v 2 / 0 U 0 2 reveal that the first three terms are of the same order of magnitude, while the last two are at least one order of magnitude smaller than the first three. Therefore, the binary gas jet in the near field cannot be approximated by a set of Reynolds-averaged boundary-layer equations. Both the mean and turbulent velocity and density fields achieve self-preservation around 24 diameters. Jet growth and centerline decay measurements are consistent with existing data on binary gas jets and the growth rate of the velocity field is slightly slower than that of the scalar field. Finally, the turbulent axial mass flux is found to follow gradient diffusion relation near the center of the jet, but the relation is not valid in other regions where the flow is intermittent.  相似文献   

2.
3.
Summary A new and very general expression is proposed for correlation of data for the effective viscosity of pseudoplastic and dilatant fluids as a function of the shear stress. Most of the models which have been proposed previously are shown to be special cases of this expression. A straightforward procedure is outlined for evaluation of the arbitrary constants.
Zusammenfassung Eine neue und sehr allgemeine Formel wird für die Korrelation der Werte der effektiven Viskosität von strukturviskosen und dilatanten Flüssigkeiten in Abhängigkeit von der Schubspannung vorgeschlagen. Die meisten schon früher vorgeschlagenen Methoden werden hier als Spezialfälle dieser Gleichung gezeigt. Ein einfaches Verfahren für die Auswertung der willkürlichen Konstanten wird beschrieben.

Nomenclature b arbitrary constant inSisko model (eq. [5]) - n arbitrary exponent in eq. [1] - x independent variable - y(x) dependent variable - y 0(x) limiting behavior of dependent variable asx 0 - y(x) limiting behavior of dependent variable asx - z original dependent variable - arbitrary constant inSisko model (eq. [5]) andBird-Sisko model (eq. [6]) - arbitrary exponent in eqs. [2] and [8] - effective viscosity = shear stress/rate of shear - A effective viscosity at = A - B empirical constant in eqs. [2] and [8] - 0 limiting value of effective viscosity as 0 - 0() limiting behavior of effective viscosity as 0 - limiting value of effective viscosity as - () limiting behavior of effective viscosity as - rate of shear - arbitrary constant inBird-Sisko model (eq.[6]) - shear stress - A arbitrary constant in eqs. [2] and [8] - 0 shear stress at inBingham model - 1/2 shear stress at = ( 0 + )/2 With 8 figures  相似文献   

4.
Flow visualizations obtained in a two-phase jet flow with 80 m particles at a mass loading of 5% revealed the following.
1.  Particles exited the jet tube in straight trajectories with fan-spreading angles of up to ±30°. The velocities of those particles having large angles were considerably lower (40% or more) than the mean particle velocity of the bulk flow.
2.  Reducing the mean particle velocity at the exit from 25 m/s to 7 m/s reduced the fan-spreading effect with a maximum angle of around 10°.
  相似文献   

5.
We prove results on the asymptotic behavior of solutions to discrete-velocity models of the Boltzmann equation in the one-dimensional slab 0x<1 with=" general=" stochastic=" boundary=" conditions=" at=" x="0" and=" x="1." assuming=" that=" there=" is=" a=" constant=">wall Maxwellian M=(M i) compatible with the boundary conditions, and under a technical assumption meaning strong thermalization at the boundaries, we prove three types of results:
I.  If no velocity has x-component 0, there are real-valued functions 1(t) and 2(t) such that in a measure-theoretic sense f i(0, t) 1 (t)M i , f i(1, t) 2 (t)M i as t. 1 and 2 are closely related and satisfy functional equations which suggest that 1(t)1 and 2(t)1 as t.
II.  Under the additional assumption that there is at least one non-trivial collision term containing a product f k f l with k = l , where k denotes the x-component of the velocity associated with f k , we show that in a measure-theoretic sense 1(t) and 2(t) converge to 1 as t. This entails L 1-convergence of the solution to the unique wall Maxwellian. For this result, k = l =0 is admissible.
III.  In the absence of any collision terms, but under the assumption that there is an irrational quotient ( i +¦ j ¦)/( l +¦ k ¦) (here i , l >0 and j , k <0), renewal=" theory=" entails=" that=" the=" solution=" converges=" to=" the=" unique=" wall=" maxwellian=" in=">L .
Communicated by L. Arkeryd  相似文献   

6.
Incoherent phase transitions are more difficult to treat than their coherent counterparts. The interface, which appears as a single surface in the deformed configuration, is represented in its undeformed state by a separate surface in each phase. This leads to a rich but detailed kinematics, one in which defects such as vacancies and dislocations are generated by the moving interface. In this paper we develop a complete theory of incoherent phase transitions in the presence of deformation and mass transport, with phase interface structured by energy and stress. The final results are a complete set of interface conditions for an evolving incoherent interface.Frequently used symbols Ai,Ci generic subsurface of St - Bi undeformed phase-i region - C configurational bulk stress, Eshelby tensor - F deformation gradient - G inverse deformation gradient - H relative deformation gradient - J bulk Jacobian of the deformation - ¯K, Ki total (twice the mean) curvature of and Si - Lin (U, V) linear transformations from U into V - Lin+ linear transformations of 3 with positive determinant - Orth+ rotations of 3 - Qa external bulk mass supply of species a - ¯S bulk Cauchy stress tensor - S bulk Piola-Kirchhoff stress tensor - Si undeformed phase i interface - Ui relative velocity of Si - Unim+ linear transformations of 3 with unit determinant - ¯V, Vi normal velocity of and Si - intrinsic edge velocity of S and A i S - Wi volume flow across the phase-i interface - X material point - b external body force - e internal bulk configurational force - fi external interfacial force (configurational) - ¯g external interfacial force (deformational) - grad, div spatial gradient and divergence - gradient and divergence on - h relative deformation - ha, diffusive mass flux of species a and list of mass fluxes - ¯m outward unit normal to a spatial control volume - ¯n, ni unit normal to and Si - n subspace of 3 orthogonal to n - ¯qa external interfacial mass supply of species a - s ......... - ¯v, vi compatible velocity fields of and Si - ¯w, wi compatible edge velocity fields for and Ai - x spatial point - yi deformation or motion of phase i - y. material velocity - generic subsurfaces of - , i deformed body and deformed phase-i region - () energy supplied to by mass transport - symmetry group of the lattice - i, surface jacobians - lattice - () power expended on - spatial control volume - S deformed phase interface - lattice point density - interfacial power density - , A total surface stress - C configurational surface stress for phase 1 (material) - ¯Ci configurational surface stress (spatial) - Fi tangential deformation gradient - Gi inverse tangential deformation gradient - H incoherency tensor - ¯1(x), 1i(X) inclusions of ¯n(x) and n i (X) into 3 - K configurational surface stress for phase 2 (material) - ¯L, li curvature tensor of and Si - ¯P(x), Pi(X) projections of 3 onto ¯n(x) and ni (X) - ¯S, S deformational surface stress (spatial and material) - ¯a, a normal part of total surface stress - c normal part of configurational surface stress for phase 1 (material) - ei internal interfacial configurational force - ¯v, vi unit normal to and A i - (x),i(X) projections of 3 onto ¯n(x) and n i (X) - i normal internal force (material) - bulk free energy - slip velocity - i=(–1)i i ......... - a, chemical potential of species a and list of potentials - a, bulk molar density of species a and list of molar densities - i normal internal force (spatial) - surface tension - , i effective shear - referential-to-spatial transform of field - interfacial energy - grand canonical potential - l unit tensor in 3 - x, vector and tensor product in 3 - (...)., t(...) material and spatial time derivative - , Div material gradient and divergence - gradient and divergence on Si - (...), (...) normal time derivative following and Si - (...) limit of a bulk field asx ,xi - [...],...> jump and average of a bulk field across the interface - (...)ext extension of a surface tensor to 3 - tangential part of a vector (tensor) on and Si  相似文献   

7.
Two-phase flow in stratified porous media is a problem of central importance in the study of oil recovery processes. In general, these flows are parallel to the stratifications, and it is this type of flow that we have investigated experimentally and theoretically in this study. The experiments were performed with a two-layer model of a stratified porous medium. The individual strata were composed of Aerolith-10, an artificial: sintered porous medium, and Berea sandstone, a natural porous medium reputed to be relatively homogeneous. Waterflooding experiments were performed in which the saturation field was measured by gamma-ray absorption. Data were obtained at 150 points distributed evenly over a flow domain of 0.1 × 0.6 m. The slabs of Aerolith-10 and Berea sandstone were of equal thickness, i.e. 5 centimeters thick. An intensive experimental study was carried out in order to accurately characterize the individual strata; however, this effort was hampered by both local heterogeneities and large-scale heterogeneities.The theoretical analysis of the waterflooding experiments was based on the method of large-scale averaging and the large-scale closure problem. The latter provides a precise method of discussing the crossflow phenomena, and it illustrates exactly how the crossflow influences the theoretical prediction of the large-scale permeability tensor. The theoretical analysis was restricted to the quasi-static theory of Quintard and Whitaker (1988), however, the dynamic effects described in Part I (Quintard and Whitaker 1990a) are discussed in terms of their influence on the crossflow.Roman Letters A interfacial area between the -region and the -region contained within V, m2 - a vector that maps onto , m - b vector that maps onto , m - b vector that maps onto , m - B second order tensor that maps onto , m2 - C second order tensor that maps onto , m2 - E energy of the gamma emitter, keV - f fractional flow of the -phase - g gravitational vector, m/s2 - h characteristic length of the large-scale averaging volume, m - H height of the stratified porous medium , m - i unit base vector in the x-direction - K local volume-averaged single-phase permeability, m2 - K - {K}, large-scale spatial deviation permeability - { K} large-scale volume-averaged single-phase permeability, m2 - K * large-scale single-phase permeability, m2 - K ** equivalent large-scale single-phase permeability, m2 - K local volume-averaged -phase permeability in the -region, m2 - K local volume-averaged -phase permeability in the -region, m2 - K - {K } , large-scale spatial deviation for the -phase permeability, m2 - K * large-scale permeability for the -phase, m2 - l thickness of the porous medium, m - l characteristic length for the -region, m - l characteristic length for the -region, m - L length of the experimental porous medium, m - characteristic length for large-scale averaged quantities, m - n outward unit normal vector for the -region - n outward unit normal vector for the -region - n unit normal vector pointing from the -region toward the -region (n = - n ) - N number of photons - p pressure in the -phase, N/m2 - p 0 reference pressure in the -phase, N/m2 - local volume-averaged intrinsic phase average pressure in the -phase, N/m2 - large-scale volume-averaged pressure of the -phase, N/m2 - large-scale intrinsic phase average pressure in the capillary region of the -phase, N/m2 - - , large-scale spatial deviation for the -phase pressure, N/m2 - pc , capillary pressure, N/m2 - p c capillary pressure in the -region, N/m2 - p capillary pressure in the -region, N/m2 - {p c } c large-scale capillary pressure, N/m2 - q -phase velocity at the entrance of the porous medium, m/s - q -phase velocity at the entrance of the porous medium, m/s - Swi irreducible water saturation - S /, local volume-averaged saturation for the -phase - S i initial saturation for the -phase - S r residual saturation for the -phase - S * { }*/}*, large-scale average saturation for the -phase - S saturation for the -phase in the -region - S saturation for the -phase in the -region - t time, s - v -phase velocity vector, m/s - v local volume-averaged phase average velocity for the -phase, m/s - {v } large-scale averaged velocity for the -phase, m/s - v local volume-averaged phase average velocity for the -phase in the -region, m/s - v local volume-averaged phase average velocity for the -phase in the -region, m/s - v -{v } , large-scale spatial deviation for the -phase velocity, m/s - v -{v } , large-scale spatial deviation for the -phase velocity in the -region, m/s - v -{v } , large-scale spatial deviation for the -phase velocity in the -region, m/s - V large-scale averaging volume, m3 - y position vector relative to the centroid of the large-scale averaging volume, m - {y}c large-scale average of y over the capillary region, m Greek Letters local porosity - local porosity in the -region - local porosity in the -region - local volume fraction for the -phase - local volume fraction for the -phase in the -region - local volume fraction for the -phase in the -region - {}* { }*+{ }*, large-scale spatial average volume fraction - { }* large-scale spatial average volume fraction for the -phase - mass density of the -phase, kg/m3 - mass density of the -phase, kg/m3 - viscosity of the -phase, N s/m2 - viscosity of the -phase, Ns/m2 - V /V , volume fraction of the -region ( + =1) - V /V , volume fraction of the -region ( + =1) - attenuation coefficient to gamma-rays, m-1 - -   相似文献   

8.
Electron drift in specified fields has been examined in [1] and, as applied to a magnetron, in [2–4] with the averaging method. In [1,2], a first- and in [3,4] in a second-order approximation of the small parameter ) E/2L was used. Here and below, E and H=(c/) are the field strengths, L is the characteristic dimension of the field heterogeneity, is the charge-mass ratio of an electron (>0), and c is the velocity of light. An attempt to construct similar approximations for a drifting electron beam with allowance for the space-charge field, within the framework of the averaging method, involves considerable mathematical difficulties. This paper describes an attempt to solve the latter problem for a stationary monoenergetic beam that drifts under the influence of a plane electric field with potential (x,y) across a strong homogeneous magnetic field Hz H=const. Solutions are constructed by the method of successive approximations, in powers of the parameter =h/L, where h is the Larmor electron radius for narrow beams with a width on the order of 2h.I thank A. N. Ievlevu for assistance in the computational and graphical work, V. Ya. Kislov for a discussion of the results, and L. A. Vainshtein for suggesting the problem examined in §3 and for critical comments.  相似文献   

9.
This study considers numerical simulations of the combustions of hydrogen and various hydrocarbons with air, including 21% oxygen and 79% nitrogen, in a burner and the numerical solution of the local entropy generation rate due to the high temperature and velocity gradients in the combustion chamber. The combustion is simulated for the fuel mass flow rates providing the same heat transfer rate to the combustion chamber in the each fuel case. The effects of (only in the case of H2 fuel) and equivalence ratio () on the combustion and entropy generation rate are investigated for the different (from 5,000 to 10,000 W) and s (from 0.5 to 1.0). The numerical calculation of combustion is performed individually for all cases with the help of the Fluent CFD code. Furthermore, a computer program has been developed to numerically calculate the volumetric entropy generation rate distributions and the other thermodynamic parameters by using the results of the calculations performed with the FLUENT code. The calculations bring out that the maximum reaction rates decrease with the increase of (or the decrease of ). The large positive and negative temperature gradients occur in the axial direction, nonetheless, the increase of significantly reduces them. The calculations bring out also that with the increase of from 0.5 to 1.0, the volumetric local entropy generation rates decrease about 4% and that the merit numbers increase about 16%.  相似文献   

10.
In this work, we make use of numerical experiments to explore our original theoretical analysis of two-phase flow in heterogeneous porous media (Quintard and Whitaker, 1988). The calculations were carried out with a two-region model of a stratified system, and the parameters were chosen be consistent with practical problems associated with groundwater flows and petroleum reservoir recovery processes. The comparison between theory (the large-scaled averaged equations) and experiment (numerical solution of the local volume averaged equations) has allowed us to identify conditions for which the quasi-static theory is acceptable and conditions for which a dynamic theory must be used. Byquasi-static we mean the following: (1) The local capillary pressure,everywhere in the averaging volume, can be set equal to the large-scale capillary pressure evaluated at the centroid of the averaging volume and (2) the large-scale capillary pressure is given by the difference between the large-scale pressures in the two immiscible phases, and is therefore independent of gravitational effects, flow effects and transient effects. Bydynamic, we simply mean a significant departure from the quasi-static condition, thus dynamic effects can be associated with gravitational effects, flow effects and transient effects. To be more precise about the quasi-static condition we need to refer to the relation between the local capillary pressure and the large-scale capillary pressure derived in Part I (Quintard and Whitaker, 1990). Herep c ¦y represents the local capillary pressure evaluated at a positiony relative to the centroid of the large-scale averaging volume, and {p c x represents the large-scale capillary pressure evaluated at the centroid.In addition to{p c } c being evaluated at the centroid, all averaged terms on the right-hand side of Equation (1) are evaluated at the centroid. We can now write the equations describing the quasi-static condition as , , This means that the fluids within an averaging volume are distributed according to the capillary pressure-saturation relationwith the capillary pressure held constant. It also means that the large-scale capillary pressure is devoid of any dynamic effects. Both of these conditions represent approximations (see Section 6 in Part I) and one of our main objectives in this paper is to learn something about the efficacy of these approximations. As a secondary objective we want to explore the influence of dynamic effects in terms of our original theory. In that development only the first four terms on the right hand side of Equation (1) appeared in the representation for the local capillary pressure. However, those terms will provide an indication of the influence of dynamic effects on the large-scale capillary pressure and the large-scale permeability tensor, and that information provides valuable guidance for future studies based on the theory presented in Part I.Roman Letters A scalar that maps {}*/t onto - A scalar that maps {}*/t onto - A interfacial area between the -region and the -region contained within, m2 - A interfacial area between the -region and the -region contained within, m2 - A interfacial area between the -region and the -region contained within, m2 - a vector that maps ({}*/t) onto , m - a vector that maps ({}*/t) onto , m - b vector that maps ({p}– g) onto , m - b vector that maps ({p}– g) onto , m - B second order tensor that maps ({p}– g) onto , m2 - B second order tensor that maps ({p}– g) onto , m2 - c vector that maps ({}*/t) onto , m - c vector that maps ({}*/t) onto , m - C second order tensor that maps ({}*/t) onto , m2 - C second order tensor that maps ({}*/t) onto . m2 - D third order tensor that maps ( ) onto , m - D third order tensor that maps ( ) onto , m - D second order tensor that maps ( ) onto , m2 - D second order tensor that maps ( ) onto , m2 - E third order tensor that maps () onto , m - E third order tensor that maps () onto , m - E second order tensor that maps () onto - E second order tensor that maps () onto - p c =(), capillary pressure relationship in the-region - p c =(), capillary pressure relationship in the-region - g gravitational vector, m/s2 - largest of either or - - - i unit base vector in thex-direction - I unit tensor - K local volume-averaged-phase permeability, m2 - K local volume-averaged-phase permeability in the-region, m2 - K local volume-averaged-phase permeability in the-region, m2 - {K } large-scale intrinsic phase average permeability for the-phase, m2 - K –{K }, large-scale spatial deviation for the-phase permeability, m2 - K –{K }, large-scale spatial deviation for the-phase permeability in the-region, m2 - K –{K }, large-scale spatial deviation for the-phase permeability in the-region, m2 - K * large-scale permeability for the-phase, m2 - L characteristic length associated with local volume-averaged quantities, m - characteristic length associated with large-scale averaged quantities, m - I i i = 1, 2, 3, lattice vectors for a unit cell, m - l characteristic length associated with the-region, m - ; characteristic length associated with the-region, m - l H characteristic length associated with a local heterogeneity, m - - n unit normal vector pointing from the-region toward the-region (n =–n ) - n unit normal vector pointing from the-region toward the-region (n =–n ) - p pressure in the-phase, N/m2 - p local volume-averaged intrinsic phase average pressure in the-phase, N/m2 - {p } large-scale intrinsic phase average pressure in the capillary region of the-phase, N/m2 - p local volume-averaged intrinsic phase average pressure for the-phase in the-region, N/m2 - p local volume-averaged intrinsic phase average pressure for the-phase in the-region, N/m2 - p –{p }, large scale spatial deviation for the-phase pressure, N/m2 - p –{p }, large scale spatial deviation for the-phase pressure in the-region, N/m2 - p –{p }, large scale spatial deviation for the-phase pressure in the-region, N/m2 - P c p –{p }, capillary pressure, N/m2 - {pc}c large-scale capillary pressure, N/m2 - r 0 radius of the local averaging volume, m - R 0 radius of the large-scale averaging volume, m - r position vector, m - , m - S /, local volume-averaged saturation for the-phase - S * {}*{}*, large-scale average saturation for the-phaset time, s - t time, s - u , m - U , m2 - v -phase velocity vector, m/s - v local volume-averaged phase average velocity for the-phase in the-region, m/s - v local volume-averaged phase average velocity for the-phase in the-region, m/s - {v } large-scale intrinsic phase average velocity for the-phase in the capillary region of the-phase, m/s - {v } large-scale phase average velocity for the-phase in the capillary region of the-phase, m/s - v –{v }, large-scale spatial deviation for the-phase velocity, m/s - v –{v }, large-scale spatial deviation for the-phase velocity in the-region, m/s - v –{v }, large-scale spatial deviation for the-phase velocity in the-region, m/s - V local averaging volume, m3 - V volume of the-phase in, m3 - V large-scale averaging volume, m3 - V capillary region for the-phase within, m3 - V capillary region for the-phase within, m3 - V c intersection of m3 - V volume of the-region within, m3 - V volume of the-region within, m3 - V () capillary region for the-phase within the-region, m3 - V () capillary region for the-phase within the-region, m3 - V () , region in which the-phase is trapped at the irreducible saturation, m3 - y position vector relative to the centroid of the large-scale averaging volume, m Greek Letters local volume-averaged porosity - local volume-averaged volume fraction for the-phase - local volume-averaged volume fraction for the-phase in the-region - local volume-averaged volume fraction for the-phase in the-region - local volume-averaged volume fraction for the-phase in the-region (This is directly related to the irreducible saturation.) - {} large-scale intrinsic phase average volume fraction for the-phase - {} large-scale phase average volume fraction for the-phase - {}* large-scale spatial average volume fraction for the-phase - –{}, large-scale spatial deviation for the-phase volume fraction - –{}, large-scale spatial deviation for the-phase volume fraction in the-region - –{}, large-scale spatial deviation for the-phase volume fraction in the-region - a generic local volume-averaged quantity associated with the-phase - mass density of the-phase, kg/m3 - mass density of the-phase, kg/m3 - viscosity of the-phase, N s/m2 - viscosity of the-phase, N s/m2 - interfacial tension of the - phase system, N/m - , N/m - , volume fraction of the-phase capillary (active) region - , volume fraction of the-phase capillary (active) region - , volume fraction of the-region ( + =1) - , volume fraction of the-region ( + =1) - {p } g, N/m3 - {p } g, N/m3  相似文献   

11.
We study the different notions of convexity for the function f () = ||2 (||2 – 2 det ) where 2×2, introduced by Dacorogna & Marcellini. We show that f is convex, polyconvex, quasiconvex, rank-one convex, if and only if ¦¦ 2/3 2, 1, 1+ (for some >0), 2/3, respectively.  相似文献   

12.
In this paper we continue previous studies of the closure problem for two-phase flow in homogeneous porous media, and we show how the closure problem can be transformed to a pair of Stokes-like boundary-value problems in terms of pressures that have units of length and velocities that have units of length squared. These are essentially geometrical boundary value problems that are used to calculate the four permeability tensors that appear in the volume averaged Stokes' equations. To determine the geometry associated with the closure problem, one needs to solve the physical problem; however, the closure problem can be solved using the same algorithm used to solve the physical problem, thus the entire procedure can be accomplished with a single numerical code.Nomenclature a a vector that maps V onto , m-1. - A a tensor that maps V onto . - A area of the - interface contained within the macroscopic region, m2. - A area of the -phase entrances and exits contained within the macroscopic region, m2. - A area of the - interface contained within the averaging volume, m2. - A area of the -phase entrances and exits contained within the averaging volume, m2. - Bo Bond number (= (=(–)g2/). - Ca capillary number (= v/). - g gravitational acceleration, m/s2. - H mean curvature, m-1. - I unit tensor. - permeability tensor for the -phase, m2. - viscous drag tensor that maps V onto V. - * dominant permeability tensor that maps onto v , m2. - * coupling permeability tensor that maps onto v , m2. - characteristic length scale for the -phase, m. - l characteristic length scale representing both and , m. - L characteristic length scale for volume averaged quantities, m. - n unit normal vector directed from the -phase toward the -phase. - n unit normal vector representing both n and n . - n unit normal vector representing both n and n . - P pressure in the -phase, N/m2. - p superficial average pressure in the -phase, N/m2. - p intrinsic average pressure in the -phase, N/m2. - p p , spatial deviation pressure for the -phase, N/m2. - r 0 radius of the averaging volume, m. - r position vector, m. - t time, s. - v fluid velocity in the -phase, m/s. - v superficial average velocity in the -phase, m/s. - v intrinsic average velocity in the -phase, m/s. - v v , spatial deviation velocity in the -phase, m/s. - V volume of the -phase contained within the averaging volmue, m3. - averaging volume, m3. Greek Symbols V /, volume fraction of the -phase. - viscosity of the -phase, Ns/m2. - density of the -phase, kg/m3. - surface tension, N/m. - (v +v T ), viscous stress tensor for the -phase, N/m2.  相似文献   

13.
We consider a surface S = (), where 2 is a bounded, connected, open set with a smooth boundary and : 3 is a smooth map; let () denote the components of the two-dimensional linearized strain tensor of S and let 0 with length 0 > 0. We assume the the norm ,|| ()||0, in the space V0() = { H1() × H1() × L2(); = 0 on 0 } is equivalent to the usual product norm on this space. We then establish that this assumption implies that the surface S is uniformly elliptic and that we necessarily have 0 = .  相似文献   

14.
Lombardi  Ariel L.  Tarzia  Domingo A. 《Meccanica》2001,36(3):251-264
Similarity solutions for a mathematical model for thawing in a saturated semi-infinite porous medium is considered when change of phase induces a density jump and a heat flux condition of the type is imposed on the fixed face x=0. Different cases depending on physical parameters are analysed and the explicit solution is obtained if and only if an inequality for the thermal coefficient q 0 is verified. An improvement for the existence of a similarity solution for the same free boundary problem with a constant temperature on the fixed face x=0 is also obtained. Sommario. Vengono considerate soluzioni di similarità per un modello matematico di disgelo di un mezzo poroso saturo semi-infinito allorquando il cambiamento di fase induce un salto di densità ed una condizione di flusso di calore del tipo viene imposta sulla faccia fissa x=0. Si analizzano differenti casi dipendenti da parametri fisici e la soluzione esplicita viene ottenuta se e solo se risulta verificata una diseguaglianzo per il coefficiente termico q 0. Si ottiene altresi un miglioramento della condizione di esistenza di una soluzione di similarità per lo stesso problema al contorno libero con temperatura costante sulla faccia fissa x=0.  相似文献   

15.
The theory of a vibrating-rod densimeter   总被引:1,自引:0,他引:1  
The paper presents a theory of a device for the accurate determination of the density of fluids over a wide range of thermodynamic states. The instrument is based upon the measurement of the characteristics of the resonance of a circular section tube, or rod, performing steady, transverse oscillations in the fluid. The theory developed accounts for the fluid motion external to the rod as well as the mechanical motion of the rod and is valid over a defined range of conditions. A complete set of working equations and corrections is obtained for the instrument which, together with the limits of the validity of the theory, prescribe the parameters of a practical design capable of high accuracy.Nomenclature A, B, C, D constants in equation (60) - A j , B j constants in equation (18) - a j + , a j wavenumbers given by equation (19) - C f drag coefficient defined in equation (64) - C f /0 , C f /1 components of C f in series expansion in powers of - c speed of sound - D b drag force of fluid b - D 0 coefficient of internal damping - E extensional modulus - force per unit length - F j + , F j constants in equation (24) - f, g functions of defined in equations (56) - G modulus of rigidity - I second moment of area - K constant in equation (90) - k, k constants defined in equations (9) - L half-length of oscillator - Ma Mach number - m a mass per unit length of fluid a - m b added mass per unit length of fluid b - m s mass per unit length of solid - n j eigenvalue defined in equation (17) - P power (energy per cycle) - P a , P b power in fluids a and b - p pressure - R radius of rod or outer radius of tube - R c radius of container - R i inner radius of tube - r radial coordinate - T tension - T visc temperature rise due to heat generation by viscous dissipation - t time - v r , v radial and angular velocity components - y lateral displacement - z axial coordinate - dimensionless tension - a dimensionless mass of fluid a - b dimensionless added mass of fluid b - b dimensionless drag of fluid b - dimensionless parameter associated with - 0 dimensionless coefficient of internal damping - dimensionless half-width of resonance curve - dimensionless frequency difference defined in equation (87) - spatial resolution of amplitude - R, , , s , increments in R, , , s , - dimensionless amplitude of oscillation - dimensionless axial coordinate - ratio of to - a , b ratios of to for fluids a and b - angular coordinate - parameter arising from distortion of initially plane cross-sections - f thermal conductivity of fluid - dimensionless parameter associated with - viscosity of fluid - a , b viscosity of fluids a and b - dimensionless displacement - j jth component of - density of fluid - a , b density of fluids a and b - s density of tube or rod material - density of fluid calculated on assumption that * - dimensionless radial coordinate - * dimensionless radius of container - dimensionless times - rr rr, r radial normal and shear stress components - spatial component of defined in equation (13) - j jth component of - dimensionless streamfunction - 0, 1 components of in series expansion in powers of - phase angle - r phase difference - ra , rb phase difference for fluids a and b - streamfunction - j jth component defined in equation (22) - dimensionless frequency (based on ) - a , b dimensionless frequency in fluids a and b - s dimensionless frequency (based on s ) - angular frequency - 0 resonant frequency in absence of fluid and internal damping - r resonant frequency in absence of internal fluid - ra , rb resonant frequencies in fluids a and b - dimensionless frequency - dimensionless frequency when a vanishes - dimensionless frequencies when a vanishes in fluids a and b - dimensionless resonant frequency when a , b, b and 0 vanish - dimensionless resonant frequency when a , b and b vanish - dimensionless resonant frequency when b and b vanish - dimensionless frequencies at which amplitude is half that at resonance  相似文献   

16.
It is proposed to investigate the stability of a plane axisymmetric flow with an angular velocity profile (r) such that the angular velocity is constant when r < rO – L and r > rO + L but varies monotonically from 1 to 2 near the point rO, the thickness of the transition zone being small L rO, whereas the change in velocity is not small ¦21¦ 2, 1. Obviously, as L O short-wave disturbances with respect to the azimuthal coordinate (k=m/rO 1/rO) will be unstable with a growth rate-close to the Kelvin—Helmholtz growth rate. In the case L=O (i.e., for a profile with a shear-discontinuity) we find the instability growth rate O and show that where the thickness of the discontinuity L is finite (but small) the growth rate does not differ from O up to terms proportional to kL 1 and 1/m 1. Using this example it is possible to investigate the effect of rotation on the flow stability. It is important to note that stabilization (or destabilization) of the flow in question by rotation occurs only for three-dimensional or axisymmetric perturbations.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 1, pp. 111–114, January–February, 1985.  相似文献   

17.
Summary The effects of superposing streamwise vorticity, periodic in the lateral direction, upon two-dimensional asymptotic suction flow are analyzed. Such vorticity, generated by prescribing a spanwise variation in the suction velocity, is known to play an important role in unstable and turbulent boundary layers. The flow induced by the variation has been obtained for a freestream velocity which (i) is steady, (ii) oscillates periodically in time, (iii) changes impulsively from rest. For the oscillatory case it is shown that a frequency can exist which maximizes the induced, unsteady wall shear stress for a given spanwise period. For steady flow the heat transfer to, or from a wall at constant temperature has also been computed.Nomenclature (x, y, z) spatial coordinates - (u, v, w) corresponding components of velocity - (, , ) corresponding components of vorticity - t time - stream function for v and w - v w mean wall suction velocity - nondimensional amplitude of variation in wall suction velocity - characteristic wavenumber for variation in direction of z - T temperature - P pressure - density - coefficient of kinematic viscosity - coefficient of thermal diffusivity - (/v w)2 - frequency of oscillation of freestream velocity - nondimensional amplitude of freestream oscillation - /v w 2 - z z - yv w y/ - v w 2 t/4 - /v w - U 0 characteristic freestream velocity - u/U 0 - coefficient of viscosity - w wall shear stress - Prandtl number (/) - q heat transfer to wall - T w wall temperature - T (T wT)/(T w–)  相似文献   

18.
Vocational College at the Leningradskii Metallicheskii Zavod Industrial Association. Translated from Prikladnaya Mekhanika, Vol. 26, No. 4, pp. 72–79, April, 1990.  相似文献   

19.
Summary The present work deals with the case of a two-dimensional slider bearing with a rigid pad and an elastic bearing. Fluid viscosity is assumed to be only a pressure function. We determined the bearing deformation, the pressure distribution and the load capacity at different values of the inclination angle of the slider, with a numerical integration of the system consisting of the elasticity and Reynolds equations. The results show that, with an iso-viscous fluid, bearing elasticity causes a load capacity decrease. Instead bearing elasticity together with the variation of fluid viscosity due to pressure causes a load capacity greater than that of the iso-viscous case (=0).
Sommario Il presente lavoro studia il problema della coppia prismatica lubrificata con pattino rigido di allungamento infinito e cuscinetto deformabile; si suppone che la viscosità del fluido sia funzione della sola pressione. Il sistema di equazioni, costituito dall'equazione di Reynolds e dall'equazione dell'elasticità, è stato risolto numericamente, determinando la deformazione del cuscinetto, andamento della pressione e la capacità di carico per diversi valori dell'inclinazione del pattino. I risultati dimostrano che, con fluido isoviscoso, la deformabilità del cuscinetto determina una riduzione della capacità di carico. Se si considera, invece, effetto combinato dell'elasticità del cuscinetto e della variazione della viscosità del fluido, la capacità di carico risulta maggiore di quella che si ottiene con fluido isoviscoso (=0).

Nomenclature /L - /L - x/L - x/L - - ¯C CZ/h 1 - E elasticity modulus - h film thickness - H elastic deformation of the bearing - h 1 minimum film thickness - h 2 inlet thickness - inclination of the pad - h Z/h 1 - HZ/h 1 - L pad length - viscosity - 0 viscosity with no over-pressure - p over pressure - p P ec-P rc where:ec=elastic caserc=rigid case - P h 1 2 /60VL - h 2/h 1=1+L/h 1 - FV bearing velocity - W load capacity per unit width - Wh 2 1 /60 VL 2 - Z E h 3 1 /12 0 VL 2 A first version of this paper was presented at the 7th National AIMETA congress, held at Trieste, October 2–5, 1984. This work was supported by C.N.R.  相似文献   

20.
Summary This paper is devoted to a study of the flow of a second-order fluid (flowing with a small mass rate of symmetrical radial outflow m, taken negative for a net radial inflow) over a finite rotating disc enclosed within a coaxial cylinderical casing. The effects of the second-order terms are observed to depend upon two dimensionless parameters 1 and 2. Maximum values 1 and 2 of the dimensionless radial distances at which there is no recirculation, for the cases of net radial outflow (m>0) and net radial inflow (m<0) respectively, decrease with an increase in the second-order effects [represented by T(=1+2)]. The velocities at 1 and 2 as well as at some other fixed radii have been calculated for different T and the associated phenomena of no-recirculation/recirculation discussed. The change in flow phenomena due to a reversal of the direction of net radial flow has also been studied. The moment on the rotating disc increases with T.Nomenclature , , z coordinates in a cylindrical polar system - z 0 distance between rotor and stator (gap length) - =/z 0, dimensionless radial distance - =z/z 0, dimensionless axial distance - s = s/z0, dimensionless disc radius - V =(u, v, w), velocity vector - dimensionless velocity components - uniform angular velocity of the rotor - , p fluid density and pressure - P =p/(2 z 02 2 , dimensionless pressure - 1, 2, 3 kinematic coefficients of Newtonian viscosity, elastico-viscosity and cross-viscosity respectively - 1, 2 2/z 0 2 , resp. 3/z 0 2 , dimensionless parameters representing the ratio of second-order and inertial effects - m = , mass rate of symmetrical radial outflow - l a number associated with induced circulatory flow - Rm =m/(z 01), Reynolds number of radial outflow - R l =l/(z 01), Reynolds number of induced circulatory flow - Rz =z 0 2 /1, Reynolds number based on the gap - 1, 2 maximum radii at which there is no recirculation for the cases Rm>0 and Rm<0 respectively - 1(T), 2(T) 1 and 2 for different T - U 1(T) (+) = dimensionless radial velocity, Rm>0 - V 1(T) (+) = , dimensionless transverse velocity, Rm>0 - U 2(T) (–) = , dimensionless radial velocity, Rm=–Rn<0, m=–n - V 2(T) (–) = , dimensionless transverse velocity, Rm<0 - C m moment coefficient  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号