首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Seeded emulsion polymerizations of styrene using polystyrene (PS) seed particles with incorporated nonionic emulsifier were carried out at 40 and 70 °C to investigate the influence of temperature during the polymerization process including the swelling step of the seed particles with monomer on the formation of multihollow PS particles. An increase in the temperature during the polymerization process caused an increase in the rate of coalescence (i.e., the degree of coalescence at any given time) of the small water domains in the inside. After the coalescence proceeded excessively, the water domains were eventually discharged from the particles to the medium, resulting in nonhollow particles. The results show that it is important for the preparation of the multihollow PS particles to control the coalescence of a lot of small water domains inside the seed particles with the incorporated nonionic emulsifier, and strongly support the formation mechanism previously proposed. Part CCCXX of the series “Studies on Suspension and Emulsion”.  相似文献   

2.
A general emulsion copolymerization of styrene and methacrylic acid was carried out with polyoxyethylene nonyl phenyl ether nonionic emulsifier. Surprisingly, about 75% of the nonionic emulsifier was included inside forming particles.  相似文献   

3.
The incorporations of polyoxyethylene lauryl ether (Emulgen 109P) and polyoxyethylene nonylphenyl ether (Emulgen 911) nonionic emulsifiers inside poly(methyl methacrylate) (PMMA), poly(ethyl methacrylate) (PEMA), and poly(iso-butyl methacrylate) (Pi-BMA) particles prepared by emulsifier-present emulsion polymerizations were examined. To measure the amounts of the incorporated nonionic emulsifiers, optimum compositions of 2-propanol aqueous solutions to remove the nonionic emulsifier from the particle surfaces without removal from the insides were determined. The amount of the incorporation measured by gel permeation chromatography was increased in the order of PMMA > PEMA > Pi-BMA, which accorded with the order of miscibility between each polymer and the emulsifier.  相似文献   

4.
Anomalous polymer particles with a partial protuberance like octopus ocellatus were produced under alkaline conditions by seeded emulsion copolymerization for styrene and butyl acrylate, with styrene-butyl acrylate-methacrylic acid terpolymer emulsion as seed. The mechanism of production of the polymer particles was studied. By transmission electron microscopic observation of the particles at each conversion, it was observed that the anomalous polymer particles were produced by partial growth of each of the individual seed particles throughout polymerization. Ionization of the carboxyl groups and low viscosity in the growing particles during the process of polymerization were important factors for partial growth.Part CIII of the series Studies on Suspension and Emulsion.  相似文献   

5.
The effects of nonionic emulsifier on the formation of multihollow structures formed within sub-micron-sized polymer particles by the “acid/alkali method” proposed by the authors were examined. The original acid-swellable particles were produced by seeded emulsion terpolymerization of styrene, butyl acrylate, and dimethylaminoethyl methacrylate. The results indicate that the nonionic emulsifier had a great effect on the formation of multihollow particles.  相似文献   

6.
 Composite polymer particles which contain poly(methyl methacrylate) (PMMA) and polystyrene (PS) components (PMMA/PS composite particle) were synthesized by the method of multistage soapless seeded emulsion polymerization. In this study, the process of multistage soapless seeded emulsion polymerization included two-stage polymerization, three-stage polymerization or four-stage polymerization. The morphologies of the PMMA/PS composite particles were studied. The kinetic factor was the main force to control the morphology of the linear PMMA–PS composite particles which were synthesized by the method of two-stage reaction. Both the kinetic factor and the thermodynamic factor decide the morphology of the linear composite particles which were synthesized by the method of either three-stage or four-stage reaction. However, the thermodynamic factor cannot influence the morphology of the PMMA/PS composite particles with a cross-linked structure which were synthesized by the method of three-stage reaction. The cross-linked composite polymer particles had the morphology of a multilayer structure, which showed that the polymer layers accumulated in their order of production. Received: 9 January 2001 Accepted: 14 June 2001  相似文献   

7.
The influence of nonionic emulsifier, included inside styrene-methacrylic acid copolymer [P(S-MAA)] particles during emulsion copolymerization, on the formation of multihollow structure inside the particles via the alkali/cooling method (proposed by the authors) was examined in comparison to emulsifier-free particles. It was clarified that the nonionic emulsifier included inside the P(S-MAA) particles eased the formation of multihollow structure.Part CCL of the series studies on suspension and emulsion  相似文献   

8.
Polymer emulsion having ethyleneurea groups at particle surfaces was produced by emulsifier-free seeded emulsion copolymerization of n-butyl methacrylate (BMA) and methacrylamide ethylethyleneurea (EU) with poly(BMA) seed particles utilizing the starved-fed monomer addition method. This emulsion film, prepared by casting the polymer emulsion on an alkyd resin plate, had a superior adhesion in water, as well as on stainless steel. Such superior wet adhesions seem to be based on a large amount of EU predominantly localized at the particle surfaces.Part CCXLIX of the series "Studies on suspension and emulsion"  相似文献   

9.
10.
The aim of this research was to prepare a monodisperse polystyrene latex without surfactants adsorbed at the particle surface. Conventional polymerization formulations usually lead to large amounts of oligomers. Furthermore, they are characterized by a low reproducibility with respect to particle size. This was overcome by using a seed latex that was crosslinked in order to overcome dissolution in the monomer phase. By adjusting the seed concentration, any desired particle size in the range 0.5–1.2 m could be obtained. The monodispersity was very good.  相似文献   

11.
We describe the synthesis and characterization of latex particles labeled with a brightly fluorescent yellow dye (HY) based on the benzothioxanthene ring structure. Three dye derivatives were synthesized with different spacers connecting the HY nucleus to a methacrylate group. For one of the dyes (HY2CMA, rA), we show that the reactivity ratios with styrene (rA = 0.71, rB = 0.25) and butyl methacrylate (rA = 0.87, rB = 0.14) should lead to random dye incorporation if the amount of dye in the feed is small. Seeded emulsion polymerization fails to lead to significant dye incorporation unless large amounts of nonionic surfactant are present. In contrast, miniemulsion polymerization worked well to yield latex particles of polystyrene, poly(butyl methacrylate), and poly(methyl methacrylate) with high monomer conversion and essentially quantitative dye incorporation. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 766–778, 2003  相似文献   

12.
A preparation method for multilayered gold-silica-polystyrene core-shell composite particles is proposed. The gold-silica core-shell particles of 192-nm-sized, synthesized by coating the 18-nm-sized gold particles with silica by a seeded growth technique, were used as cores for succeeding polystyrene coating. After surface modification of gold-silica composite particles by methacryloxypropyltrimethoxysilane (MPTMS), polymerizations of styrene (0.16-0.4 M) were conducted with 8 x 10(-3) M of potassium persulfate initiator in the presence of 1 x 10(-3) M of sodium p-styrenesulfonate anionic monomer. Multilayered core-shell gold-silica-polystyrene particles that contained a single core could be obtained. The coefficient of variation of size distribution (CV) of the composite particles was less than 7%, and polystyrene shell thickness was in a range of 193 to 281 nm.  相似文献   

13.
In this research, submicron and carboxyl‐functionalized magnetic latex particles were elaborated by using seeded emulsion polymerization technique in presence of oil‐in‐water (o/w) magnetic emulsion as seed. The polymerization conditions were optimized in order to get well‐defined latex particles with magnetic core and polymer shell bearing carboxylic (–COOH) functionality. Starting from (o/w) magnetic emulsion as seed, synthesis process was performed by copolymerization of styrene (St) monomer with the cross‐linker divinylbenzene (DVB) in presence of 4,4′‐azobis(4‐cyanopentanoic acid) (ACPA) as a carboxyl‐bearing initiator. The prepared magnetic latex particles were first characterized in terms of particle size, chemical composition, morphology, magnetic properties, magnetic content, and colloidal stability using various techniques, e.g. particle size analyzer using dynamic light scattering (DLS) technique, Fourier transform infrared, transmission electron microscopy, vibrating sample magnetometer, thermogravimetric analysis, and zeta potential measurements as a function of pH of the dispersion media, respectively. The prepared magnetic latex particles were then used as second seed for further functionalization with methacrylic acid (MAA) in order to enhance carboxylic groups on the magnetic particle's surface. The results showed that final magnetic latex particles possessed spherical morphology with core‐shell structure and enriched carboxylic acid functionality. More importantly, they exhibited superparamagnetism with high magnetic content (58.42 wt%) and high colloidal stability, which considered as the main requirements for their application in the biomedical diagnostic domains. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

14.
Utilizing a new type of monomer swelling method, 6.1 m-size monodisperse polymer particles were prepared by seeded polymerization. 1.8 m-size monodisperse polystyrene (PS) seed particles (1.8 m in size) were prepared by dispersion polymerization in ethanol-water (80/20, v/v) medium in the presence of poly(acrylic acid) as stabilizer with 2,2-azobisisobutyronitrile as initiator. The PS seed dispersion was mixed with ethanol-water (60/40, v/v) solution dissolving styrene (S) monomer, benzoyl peroxide as initiator, and poly(vinyl alcohol) as stabilizer. By slow, continuous, dropwise addition of water with a micro feeder into the mixture, the PS particles absorbed the many S monomers, which were separated from the medium and swelled from 1.8 m to 8.4 m while keeping the monodispersity high. We named this procedure the dynamic swelling method. Then, the seeded polymerization of the absorbed S monomer was carried out in the presence of NaNO2 as water-solube inhibitor.Part CXXII of the series Studies on Suspension and Emulsion.  相似文献   

15.
Studies of seeded and unseeded polymerization of styrene using sodium dodecylsulfate as emulsifier have been carried out in order to investigate the mechanism of particle nucleation in such systems and to test the theory presented in Part I of this series. The rate of capture of water-soluble oligomeric radicals was considered to be governed by absorption of oligomers with chain length one less than the critical chain length. It was concluded that the micelles became the dominating loci for particle nucleation above CMC for the emulsifier. A complete nonsteady-state model for particle initiation above CMC which takes into account radical desorption and reabsorption has been developed. It was indicated that, even for styrene, desorption of radicals may play a role in controlling the radical and particle number of interval I under certain conditions. The model also showed that the efficiencies of particles in absorbing radicals could be calculated from physical parameters, such as diffusion constants and surface charge densities, which are available for the system.  相似文献   

16.
The batch emulsion polymerization kinetics of styrene (St) initiated by a water-soluble peroxodisulfate in the presence of a nonionic emulsifier was investigated. The polymerization rate versus the conversion curves showed two nonstationary rate intervals, two rate maxima, and Smith–Ewart Interval 2 (nondistinct). The rate of polymerization and number of nucleated polymer particles were proportional to the 1.4th and 2.4th powers, respectively, of the emulsifier concentration. Deviation from the micellar nucleation model was attributed to the low water solubility of the emulsifier, the low level of the micellar emulsifier, and the mixed modes of particle nucleation. In emulsion polymerizations with a low emulsifier concentration, the number of radicals per particle and particle size increased with increasing conversion, and the increase was more pronounced at a low conversion. By contrast, in emulsion polymerizations with a high emulsifier concentration, the number of radicals per particle decreased with increasing conversion. This is discussed in terms of the mixed models of particle nucleation, the gel effect, and the pseudobulk kinetics. The formation of monodisperse latex particles was attributed to coagulative nucleation and droplet nucleation for the polymerizations with low and high emulsifier concentrations, respectively. The effects of the continuous release of the emulsifier from nonmicellar aggregates and monomer droplets, the close-packing structure of the droplet surface, and the hydrophobic nature of the emulsifier on the emulsion polymerization of St are discussed. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 4422–4431, 1999  相似文献   

17.
For the purpose of extending the size range of polymer seed particles used in “dynamic swelling method” (DSM), first it was verified theoretically that the submicron-sized polymer particles produced by emulsion polymerization can also absorb a large amount of monomer by DSM in both equilibrium and kinetic control states. Next, on the basis of the theoretical results, experimentally about 2.6 μm-sized styrene-swollen polystyrene (PS) particles were prepared utilizing DSM in the presence of 0.64 μm-sized monodispersed PS seed particles produced by emulsifier-free emulsion polymerization. Moreover, 2.5 μm-sized monodispersed PS particles were produced by the addition of cupric chloride as a water-soluble inhibitor to depress the by-production of submicron-sized PS particles in the seeded polymerization at 30°C with 2,2′-azobis(4-methoxy-2,4-dimethylvaleronitrile) initiator. © 1998 John Wiley & Sons, Inc. J. Polym. Sci. A Polym. Chem. 36: 2513–2519, 1998  相似文献   

18.
Poly(i-butyl methacrylate)-polystyrene block copolymer was successfully prepared in an aqueous medium by two-step atom transfer radical polymerization (ATRP), mini-emulsion- and seeded-ATRP, in which ethyl 2-bromoisobutyrate/CuBr/4,4-dinonyl-2,2-dipyridyl initiator system was used. The block copolymer had narrow molecular weight distribution (Mw/Mn=1.1) and the number-average molecular weight measured by gel permeation chromatography agreed with the calculated value.Part CCXLVIII of the series Studies on Suspension and Emulsion  相似文献   

19.
20.
A previously proposed method of soap-free emulsion polymerization employing an amphoteric initiator, 2,2'-azobis [N-(2-carboxyethyl)-2-methylpropionamidine] tetrahydrate (VA-057), was extended to synthesize micrometer-sized polystyrene particles with low polydispersity in an acidic region of pH from 3.3 to 4.6. A buffer system of CH3COOH/CH3COONa was used for the adjustment of pH, which was aimed at effective promotion of particle coagulation in early stage of the polymerization. In these experiments, CH3COOH concentration was varied from 20 to 360 mM at a CH3COONa concentration of 10 mM. Polymer particles with an average size of 1.8 microm and low polydispersity were obtained at the CH3COOH concentration of 40 mM for the concentrations of 1.1 M styrene monomer and 10 mM initiator. To more precisely control dispersion stability of particles, experiments in which pH was stepwisely changed during the polymerization were also carried out. This polymerization method could enhance the average size of particles to 2.2 microm while retaining the monodispersity of particles. Furthermore, combination of pH stepwise change and monomer addition during the polymerization could produce particles with an average size of 3.0 microm and low polydispersity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号