首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Barium ferrite (BaFe12O19) thin films have been deposited by pulsed laser deposition at 900 °C in 250 mTorr oxygen on Si substrates with Pt(111) underlayers. The barium ferrite films contained platelet grains and a small amount of acicular grains, with sizes of 300 nm and 80×300 nm, respectively, and had a surface roughness of 11 nm. Vibrating-sample magnetometer measurements indicated that the BaFe12O19 films have some perpendicular orientation, with a perpendicular squareness of 0.64 and an in-plane squareness of 0.28. The saturation magnetization is about 190 emu/cc. The perpendicular and in-plane coercivities are 2.1 kOe and 1.6 kOe, respectively. PACS 75.50.Ss; 75.60.Ej; 75.70.Ak; 68.55.Ik  相似文献   

2.
SrDy x Fe12?x O19 (x ≤ 0.08) nanofibers have been synthesized by the electrospinning method followed by calcinations process. The partial substitution of rare earth ions Dy3+ (10.5 μ B of magnetic moments) mainly occupying 12k sublattice sites in the SrFe12O19 crystal structure is investigated and discussed in this work. An enhanced coercivity of 7155 Oe has been obtained when the doped content reached to 0.08 at a relative low calcination temperature of 800 °C. As a result, we believe the synthesized SrDy x Fe12?x O19 nanofibers can potentially be useful in high-density recording media as well as permanent magnets.  相似文献   

3.
The conditions under which the thermodynamic theory of the critical slowing-down of the order parameter relaxation rate describes the behavior of magnetically uniaxial crystals are formulated. Taking into account the formulated conditions, the peculiarities of the dynamic magnetic susceptibility and the critical slowing-down of the magnetization relaxation rate of PbFe12O19 in the vicinity of the Curie temperature are studied. The obtained experimental results agree well with the droplet model of phase transitions. Based on the experimental data, an estimated value of the correlation length for the magnetization in the temperature area of the critical slowing-down of the relaxation rate is obtained within the droplet model.  相似文献   

4.
The surface of SrFe12O19 coated with a CoO layer reveals a strong exchange bias characterized by magnetic hysteresis loops. The low-temperature coercivity, HC, and the squareness, MR/MS, of a permanent magnet of SrFe12O19/CoO powder prepared by the sol–gel method are enhanced after field cooling through the Néel temperature (TN=290 K) when compared to those after zero-field cooling. The existence of loop shifts and the enhancement of HC indicate that exchange-bias effects, which are induced by the ferromagnetic/antiferromagnetic (FM/AFM) exchange-coupling interactions, are responsible for these behaviors. According to our experimental results, some of the factors controlling the exchange bias, such as FM/AFM interfaces and the CoO amount of the antiferromagnetic layer, are discussed. PACS 75.30.Et; 75.50.Ee; 75.60.Ej; 75.60.Gm; 75.70.Cn  相似文献   

5.
The equation of the magnetization of a hexagonal crystal is derived for the first time for an arbitrary orientation of the external magnetic field relative to the crystallographic c axis. In order to clarify the magnetization mechanism for a real ensemble of small particles in the framework of the given problem, surface anisotropy (which is significant for nanosize objects) was taken into account along with crystalline magnetic anisotropy and anisotropy in the particle shape. Model computer experiments prove that the magnetization curves for nanocrystals oriented in a polar angle range of 65–90° exhibit an anomaly in the form of a jump, indicating a first-order spin-reorientation phase transition. This explains a larger steepness of the experimental curve reconstructed taking into account the interaction between particles as compared to the theoretical dependence obtained by Stoner and Wohlfarth [IEEE Trans. Magn. MAG 27 (4), 3469 (1991)]. An analysis of variation of the characteristic anisotropy surface and its cross section with increasing ratio |K2|/K1 of the crystalline magnetic anisotropy constants upon a transition from a macroscopic to a nanoscopic crystal shows that surface anisotropy leads to a change in the magnetic structure. As a result, an additional easy magnetization direction emerges in the basal plane apart from the easiest magnetization direction (along the c axis). The direction of hard magnetization emerges from the basal plane, the angle of its orientation relative to the c axis being a function of the ratio | K2|/K1.  相似文献   

6.
7.
Polycrystalline multiferroic PbFe0.5Nb0.5O3 (PFN) fabricated by a solid-phase method is studied. Before sintering, a synthesized PFN powder is processed in Bridgman anvils via a force action in combination with shear deformation (FASD) at room temperature. The electrophysical properties and structural parameters of processed samples and a reference sample are compared. Point defects are shown to play a key role in the formation of the physical properties beginning from an FASD of 200 MPa.  相似文献   

8.
9.
10.
A new method of dispersing the aggregated strontium hexaferrite (SrFe12O19) magnetic nanoparticles in organic solvents such as propylene glycol monomethyl ether acetate (PGMEA), propylene glycol (PG), and glycerol, by an ultrasonic bath is reported herein. The particles size of SrFe12O19 after treatment with the PGMEA is in the range 70–100 nm. The structure of dispersed SrFe12O19 was characterized using transmission electron microscopy (TEM), high resolution scanning electron microscopy (HR SEM) and thermo gravimetric analysis (TGA). This dispersed material was used for the preparation of a topical magnetic cosmetic product as follows: The dispersion of SrFe12O19 in PG was mixed with “Dermud-Ahava Body Cream”, an ‘oil in water’ emulsion of a Dead Sea mineral cosmetic, “AHAVA”, and the magnetic properties of the created composite were determined. The ferrimagnetic behavior of the composite has been demonstrated as being very similar to the behavior of strontium hexaferrite itself.  相似文献   

11.
The correlation between methods of synthesis and magnetostrictive properties of ferrite materials is investigated. CoFe2O4 spinel ferrite was synthesized using three techniques: solid-phase reactions, thermal hydrolysis, and sol-gel. The effect of the method of synthesis on the magnetostrictive properties of spinel ferrite is demonstrated.  相似文献   

12.
We present the results of studying the luminescence properties of transparent ceramics Y3Al5O12:Yb obtained by the vacuum sintering and nanocrystalline technology. In the course of research, we measured the luminescence and luminescence excitation spectra, as well as the temperature and kinetic behavior of luminescence. Our results are analyzed in comparison with the characteristics of corresponding single crystals. We revealed that processes of generation and relaxation of electronic excitations that occur in ceramics, in particular, in the charge transfer state, are similar to processes occurring in crystals. The behavior of two charge-transfer luminescence bands at 340 and 490 nm is studied. In the range 300–600 nm, we revealed a broad emission band of radiation of other type, which is also observed in spectra of undoped ceramics. This broad band is attributed to F+ centers. Emission and excitation spectra of charge transfer luminescence at a maximum of the temperature dependence of 100 K are measured for the first time. We found that, upon excitation in the charge transfer band, luminescence in ceramics is more intense than in single crystals with similar concentrations of Yb and has a higher quenching temperature.  相似文献   

13.
In the paper the influence of mechanical activation of the powder on the final dielectric properties lead-free Ba(Fe1/2Nb1/2)O3 (BFN) ceramic was examined. The BFN ceramics were obtained by 3-steps route. Firstly, the substrates were pre-homogenized in a planetary ball mill. Than, the powder was activated in vibratory mill (the shaker type SPEX 8000 Mixer Mill) for different duration between 25 h and 100 h. The influence of the milling time on the BFN powder was monitored by X-ray diffraction. The diffraction data confirmed that the milling process of the starting components is accompanied by partial synthesis of the BFN materials. The longer of the high-energy milling duration the powders results in increasing the amount of amorphous/nanocrystalline content. The mechanically activated materials were sintered in order to obtain the ceramic samples. During this temperature treatment the final crystallisation of the powder appeared what was confirmed by XRD studies. The performed dielectric measurements have revealed the reduction of the dielectric loss of the BFN ceramics compared to materials obtained by classic methods.  相似文献   

14.
The Young’s moduli along the [100] and [110] crystallographic directions and the shear modulus along the [100] direction in a high-purity yttrium garnet ferrite single crystal are measured in the temperature range from 20 to 600°C. All the independent elastic constants are calculated for this temperature range. The behavior of the elastic moduli and elastic anisotropy factor is analyzed in the vicinity of the critical temperature of the magnetic phase transition.  相似文献   

15.
16.
A polycrystalline sample of KCa2Nb5O15 with tungsten bronze structure was prepared by a mixed oxide method at high temperature. A preliminary structural analysis of the compound showed an orthorhombic crystal structure at room temperature. Surface morphology of the compound shows a uniform grain distribution throughout the surface of the sample. Studies of temperature variation on dielectric response at various frequencies show that the compound has a transition temperature well above the room temperature (i.e., 105°C), which was confirmed by the polarization measurement. Electrical properties of the material have been studied using a complex impedance spectroscopy (CIS) technique in a wide temperature (31–500°C) and frequency (102–106 Hz) range that showed only bulk contribution and non-Debye type relaxation processes in the material. The activation energy of the compound (calculated from both the loss and modulus spectrum) is same, and hence the relaxation process may be attributed to the same type of charge carriers. A possible ‘hopping’ mechanism for electrical transport processes in the system is evident from the modulus analysis. A plot of dc conductivity (bulk) with temperature variation demonstrates that the compound exhibits Arrhenius type of electrical conductivity.   相似文献   

17.
We report on measurements of the temperature dependence of resistivity, ρ(T), for single-crystal samples of ZrB12, ZrB2, and polycrystalline samples of MgB2. It is shown that the cluster compound ZrB12 behaves as a simple metal in the normal state, with a typical Bloch-Grüneisen ρ(T) dependence. However, the resistive Debye temperature, TR=300 K, is three times smaller than TD obtained from specific heat data. We observe the T2 term in ρ(T) of all these borides, which could be interpreted as an indication of strong electron-electron interaction.  相似文献   

18.
A sequence of structural models of unit cells of complex oxides with perovskite-type structure has been constructed to refine the average structure of PbFe1/2Nb1/2O3 (PFN) at temperatures above the ferroelectric Curie point (T C ~ 110°C). Owing to the analysis of the probability theory considerations, each model is characterized by only two positional fitting parameters. With the use of the intensities of 95 symmetrically independent X-ray reflections from a PFN single crystal at 160°C, a model with the R factor below 3% (K = 2.44%) was chosen. The ravine method has been used to verify the existence of a single minimum for the R factor with respect to the fitting parameter.  相似文献   

19.
20.
In order to improve the rate capability of Li4Ti5O12, Ti4O7 powder was successfully fabricated by improved hydrogen reduction method, then a dual-phase composite Li4Ti5O12/Ti4O7 has been synthesized as anode material for lithium-ion batteries. It is found that the Li4Ti5O12/Ti4O7 composite shows higher reversible capacity and better rate capability compared to Li4Ti5O12. According to the charge-discharge tests, the Li4Ti5O12/Ti4O7 composite exhibits excellent rate capability of 172.3 mAh g?1 at 0.2 C, which is close to the theoretical value of the spinel Li4Ti5O12. More impressively, the reversible capacity of Li4Ti5O12/Ti4O7 composite is 103.1 mAh g?1 at the current density of 20 C after 100th cycles, and it maintains 84.8% of the initial discharge capacity, whereas that of the bare spinel Li4Ti5O12 is only 22.3 mAh g?1 with a capacity retention of 31.1%. The results indicate that Li4Ti5O12/Ti4O7 composite could be a promising anode material with relative high capacity and good rate capability for lithium-ion batteries.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号