首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
杨静  王川  张茹 《中国物理 B》2010,19(11):110311-110311
An improved quantum secure direct communication (QSDC) protocol is proposed in this paper.Blocks of entangled photon pairs are transmitted in two steps in which secret messages are transmitted directly.The single logical qubits and unitary operations under decoherence free subspaces are presented and the generalized Bell states are constructed which are immune to the collective noise.Two steps of qubit transmission are used in this protocol to guarantee the security of communication.The security of the protocol against various attacks are discussed.  相似文献   

2.
控制的量子隐形传态和控制的量子安全直接通信   总被引:6,自引:0,他引:6       下载免费PDF全文
高亭  闫凤利  王志玺 《中国物理》2005,14(5):893-897
我们提出了一个控制的量子隐形传态方案。在这方案中,发送方Alice 在监督者Charlie的控制下以他们分享的三粒子纠缠态作为量子通道将二能级粒子未知态的量子信息忠实的传给了遥远的接受方Bob。我们还提出了借助此传态的控制的量子安全直接通信方案。在保证量子通道安全的情况下, Alice直接将秘密信息编码在粒子态序列上,并在Charlie控制下用此传态方法传给Bob。Bob可通过测量他的量子位读出编码信息。由于没有带秘密信息的量子位在Alice 和Bob之间传送,只要量子通道安全, 这种通信不会泄露给窃听者任何信息, 是绝对安全的。这个方案的的特征是双方通信需得到第三方的许可。  相似文献   

3.
Simultaneous two-way classical and quantum (STCQ) communication combines both continuous classical coherent optical communication and continuous-variable quantum key distribution (CV-QKD), which eliminates all detection-related imperfections by being measurement-device-independent (MDI). In this paper, we propose a protocol relying on STCQ communication on the oceanic quantum channel, in which the superposition-modulation-based coherent states depend on the information bits of both the secret key and the classical communication ciphertext. We analyse the encoding combination in classical communication and consider the probability distribution transmittance under seawater turbulence with various interference factors. Our numerical simulations of various practical scenarios demonstrate that the proposed protocol can simultaneously enable two-way classical communication and CV-MDI QKD with just a slight performance degradation transmission distance compared to the original CV-MDI QKD scheme. Moreover, the asymmetric situation outperforms the symmetric case in terms of transmission distance and optical modulation variance. We further take into consideration the impact of finite-size effects to illustrate the applicability of the proposed scheme in practical scenarios. The results show the feasibility of the underwater STCQ scheme, which contributes toward developing a global quantum communication network in free space.  相似文献   

4.
马鸿洋  秦国卿  范兴奎  初鹏程 《物理学报》2015,64(16):160306-160306
提出和研究了噪声情况下的量子网络直接通信. 通信过程中所有量子节点共享多粒子Greenberger-Horne-Zeilinger (GHZ)量子纠缠态; 发送节点将手中共享的GHZ态的粒子作为控制比特、传输秘密信息的粒子作为目标比特, 应用控制非门(CNOT)操作; 每个接收节点将手中共享GHZ 态的粒子作为控制比特、接收到的秘密信息粒子作为目标比特, 再次应用CNOT门操作从而获得含误码的秘密信息. 每个接收节点从秘密信息中提取部分作为检测比特串, 并将剩余的秘密信息应用奇偶校验矩阵纠正其中存在的比特翻转错误, 所有接收节点获得纠正后的秘密信息. 对协议安全、吞吐效率、通信效率等进行了分析和讨论.  相似文献   

5.
We present a simple and practical protocol for the solution of a secure multiparty communication task, the secret sharing, and its proof-of-principle experimental realization. In this protocol, a secret is split among several parties in a way that its reconstruction requires the collaboration of the participating parties. In our scheme the parties solve the problem by sequential transformations on a single qubit. In contrast with recently proposed schemes involving multiparticle Greenberger-Horne-Zeilinger states, the approach demonstrated here is much easier to realize and scalable in practical applications.  相似文献   

6.
Quantum secure direct communication is the direct communication of secret messages without need for establishing a shared secret key first. In the existing schemes, quantum secure direct communication is possible only when both parties are quantum. In this paper, we construct a three-step semiquantum secure direct communication (SQSDC) protocol based on single photon sources in which the sender Alice is classical. In a semiquantum protocol, a person is termed classical if he (she) can measure, prepare and send quantum states only with the fixed orthogonal quantum basis {|0〉, |1〉}. The security of the proposed SQSDC protocol is guaranteed by the complete robustness of semiquantum key distribution protocols and the unconditional security of classical one-time pad encryption. Therefore, the proposed SQSDC protocol is also completely robust. Complete robustness indicates that nonzero information acquired by an eavesdropper Eve on the secret message implies the nonzero probability that the legitimate participants can find errors on the bits tested by this protocol. In the proposed protocol, we suggest a method to check Eves disturbing in the doves returning phase such that Alice does not need to announce publicly any position or their coded bits value after the photons transmission is completed. Moreover, the proposed SQSDC protocol can be implemented with the existing techniques. Compared with many quantum secure direct communication protocols, the proposed SQSDC protocol has two merits: firstly the sender only needs classical capabilities; secondly to check Eves disturbing after the transmission of quantum states, no additional classical information is needed.  相似文献   

7.
Xi Huang 《中国物理 B》2022,31(4):40303-040303
By using swap test, a quantum private comparison (QPC) protocol of arbitrary single qubit states with a semi-honest third party is proposed. The semi-honest third party (TP) is required to help two participants perform the comparison. She can record intermediate results and do some calculations in the whole process of the protocol execution, but she cannot conspire with any of participants. In the process of comparison, the TP cannot get two participants' private information except the comparison results. According to the security analysis, the proposed protocol can resist both outsider attacks and participants' attacks. Compared with the existing QPC protocols, the proposed one does not require any entanglement swapping technology, but it can compare two participants' qubits by performing swap test, which is easier to implement with current technology. Meanwhile, the proposed protocol can compare secret integers. It encodes secret integers into the amplitude of quantum state rather than transfer them as binary representations, and the encoded quantum state is compared by performing the swap test. Additionally, the proposed QPC protocol is extended to the QPC of arbitrary single qubit states by using multi-qubit swap test.  相似文献   

8.
We characterize a modified continuous-variable quantum key distribution(CV-QKD)protocol with four states in the middle of a quantum channel.In this protocol,two noiseless linear amplifiers(NLAs) are inserted before each detector of the two parts,Alice and Bob,with the purpose of increasing the secret key rate and the maximum transmission distance.We present the performance anal.ysis of the new four-state CV-QKD protocol over a Gaussian lossy and noisy channel.The simulation results show that the NLAs with a reasonable gain g can effectively enhance the secret key rate as well as the maximum transmission distance,which is generally satisfied in practice.  相似文献   

9.
Discrete modulation is proven to be beneficial to improving the performance of continuous-variable quantum key distribution (CVQKD) in long-distance transmission. In this paper, we suggest a construct to improve the maximal generated secret key rate of discretely modulated eight-state CVQKD using an optical amplifier (OA) with a slight cost of transmission distance. In the proposed scheme, an optical amplifier is exploited to compensate imperfection of Bob's apparatus, so that the generated secret key rate of eight-state protocol is enhanced. Specifically, we investigate two types of optical amplifiers, phase-insensitive amplifier (PIA) and phase-sensitive amplifier (PSA), and thereby obtain approximately equivalent improved performance for eight-state CVQKD system when applying these two different amplifiers. Numeric simulation shows that the proposed scheme can well improve the generated secret key rate of eight-state CVQKD in both asymptotic limit and finite-size regime. We also show that the proposed scheme can achieve the relatively high-rate transmission at long-distance communication system.  相似文献   

10.
A protocol for quantum secure direct communication by using entangled qutrits and swapping quantum entanglement is proposed. In this protocol, a set of ordered two-qutrit entangled states is used as quantum information channels for sending secret messages directly. During the process of transmission of particles, the transmitted particles do not carry any secret messages and are transmitted only one time. The protocol has higher source capacity than protocols using usual two-dimensional Bell-basis states as quantum channel. The security is ensured by the unitary operations randomly performed on all checking groups before the particle sequence is transmitted and the application of entanglement swapping.  相似文献   

11.
杨芳丽  郭迎  石金晶  王焕礼  潘矜矜 《中国物理 B》2017,26(10):100303-100303
A modified continuous-variable quantum key distribution(CVQKD) protocol is proposed by originating the entangled source from a malicious third party Eve in the middle instead of generating it from the trustworthy Alice or Bob. This method is able to enhance the efficiency of the CVQKD scheme attacked by local oscillator(LO) intensity attack in terms of the generated secret key rate in quantum communication. The other indication of the improvement is that the maximum transmission distance and the maximum loss tolerance can be increased significantly, especially for CVQKD schemes based on homodyne detection.  相似文献   

12.
In a quantum secure direct communication protocol, two remote parties can transmit the secret message directly without first generating a key to encrypt them. A quantum secure direct communication protocol using two-photon four-qubit cluster states is presented. The presented scheme can achieve a higher efficiency in transmission and source capacity compared with the proposed quantum secure direct communication protocols with cluster states, and the security of the protocol is also discussed.  相似文献   

13.

A multiparty quantum key agreement protocol based on three-photon entangled states is proposed. In this scheme, the quantum channel between all parties is that of a closed loop, in which the qubit transmission is one-way. Each party can obtain the sum of the other parties’ secret key values through the coding rules instead of extracting their private keys. The shared secret key cannot be determined by any subset of all the participants except the universal set and each party makes an equal contribution to the final key. Moreover, the security analysis shows our protocol can resist both outside attacks and inside attacks.

  相似文献   

14.
《Physics letters. A》2020,384(3):126074
We propose an improved scheme for unidimensional continuous-variable quantum key distribution (UCVQKD) using heralded hybrid linear amplifier, aiming to simplify the implementation and improve secret key rate. Different from the symmetrical continuous-variable quantum key distribution protocol (CVQKD), this scheme modulates one quadrature of the coherent state with security insurance. The heralded hybrid linear amplifier concatenates a deterministic linear amplifier (DLA) and a noiseless linear amplifier (NLA), which can tune between the high-gain or high noise-reduction for performance enhancement. Security analysis shows that the proposed scheme can be secured under the collective attacks. Compared with traditional UCVQKD involving noiseless amplifier, the security transmission distance of proposed protocol is increased by 24 kilometers. It not only simplifies the modulation process but also has approximate performance with symmetrical CVQKD in terms of maximal security transmission distance.  相似文献   

15.
In this paper, we proposed a novel quantum secure direct communication scheme with one-time pad in stabilizer formalism. Based on the reuse of qubit sequence, an efficient secure communication of secret messages without first producing a shared secret key can be achieved. One hence may find that the amount of private key needed for quantum communication is smaller than that in the general case. Therefore, the present protocol which is feasible with the present-day techniques may be applied to quantum communication with short-length encoding.  相似文献   

16.
Based on the famous quantum secure direct communication protocol (i.e., the Boström-Felbinger protocol) [Phys. Rev. Lett. 89 (2002) 187902] and its improvements, we propose a scheme of multiparty quantum secret sharing of classical messages (QSSCM), in which no subset of all the classical message receivers is sufficient to extract the sender’s secret classical messages but all the parties cooperate together. Then we take advantage of this multiparty QSSCM scheme to establish a scheme of multiparty secret sharing of quantum information (SSQI), in which the unknown quantum state in the sender’s qubit can be reconstructed in one receiver’s qubit if and only if all the quantum information receivers collaborate together.  相似文献   

17.
In this paper, we propose a scheme to realize quantum information transfer from a double quantum dot (DQD) system to a quantized cavity field. The DQD and the cavity field are treated as a two-state charge qubit and a continuous-variable system, respectively. It is shown that quantum information encoded in the two-state DQD system can be transferred to quantum states of the cavity field with a continuous-variable basis through appropriate projective measurements with respect to the DQD.  相似文献   

18.

In this paper, we proposed two semi-quantum direct communication protocols based on Bell states. By pre-sharing two secret keys between two communicants, Alice with the advanced quantum ability can transmit secret messages to the classical Bob who can only perform the limited classical operations. At the same time, both sides of the communication can comfirm the legitimacy of each other’s identity. Security and qubit efficency analysis have been given. The analysis results show that the two protocols can resistant to several well-known attacks and their qubit efficency is higher than some current protocols.

  相似文献   

19.
《Physics letters. A》2003,310(4):247-251
After analysing the main quantum secret sharing protocol based on the entanglement states, we propose an idea to directly encode the qubit of quantum key distributions, and then present a quantum secret sharing scheme where only product states are employed. As entanglement, especially the inaccessible multi-entangled state, is not necessary in the present quantum secret sharing protocol, it may be more applicable when the number of the parties of secret sharing is large. Its theoretic efficiency is also doubled to approach 100%.  相似文献   

20.
Based on the idea of dense coding of three-photon entangled state and qubit transmission in blocks, we present a multiparty controlled quantum secret direct communication scheme by using Greenberger-Horne-Zeilinger state. In the present scheme, the sender transmits three bits of secret message to the receiver directly and the secret message can only be recovered by the receiver under the permission of all the controllers. All three-photon entangled states are used to transmit the secret message except those chosen for eavesdropping check and the present scheme has a high source capacity because Greenberger-Horne-Zeilinger state forms a large Hilbert space.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号