首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
In this work, we try to propose in a novel way, using the Bose and Fermi quantum network approach, a framework studying condensation and evolution of a space–time network described by the Loop quantum gravity. Considering quantum network connectivity features in Loop quantum gravity, we introduce a link operator, and through extending the dynamical equation for the evolution of the quantum network posed by Ginestra Bianconi to an operator equation, we get the solution of the link operator. This solution is relevant to the Hamiltonian of the network, and then is related to the energy distribution of network nodes. Showing that tremendous energy distribution induces a huge curved space–time network may indicate space time condensation in high-energy nodes. For example, in the case of black holes, quantum energy distribution is related to the area, thus the eigenvalues of the link operator of the nodes can be related to the quantum number of the area, and the eigenvectors are just the spin network states. This reveals that the degree distribution of nodes for the space–time network is quantized, which can form space–time network condensation. The black hole is a sort of result of space–time network condensation, however there may be more extensive space–time network condensations, such as the universe singularity (big bang).  相似文献   

2.
We analyze the energy spectrum and the wave function of a particle subjected to magnetic field in the spinning cosmic string space–time and investigate the influence of the spinning reference frame and topological defect on the system. To do this we solve Schrödinger equation in the spinning cosmic string background. In our work, instead of using an approximation in the calculations, we use the quasi-exact ansatz approach which gives the exact solutions for some primary levels.  相似文献   

3.
4.
5.
We investigate the Duffin–Kemmer–Petiau equation for spin-zero bosons in a (\(3+1\))-dimensional Som–Raychaudhuri space–time. We establish the covariant Duffin–Kemmer–Petiau equation in this curved space–time for the so-called oscillator and we include interaction with a scalar potential. We determine eigenfunctions and the corresponding eigenvalues for the oscillator with the Cornell potential. We investigate the effect of the space–time’s parameters, oscillator’s frequency and the Cornell potential’s parameters on the wave functions.  相似文献   

6.
By using the method of group analysis, we obtain a new exact evolving and spherically symmetric solution of the Einstein–Cartan equations of motion, corresponding to a space–time threaded with a three-form Kalb–Ramond field strength. The solution describes in its more generic form, a space–time which scalar curvature vanishes for large distances and for large time. In static conditions, it reduces to a classical wormhole solution and to a exact solution with a localized scalar field and a torsion kink, already reported in literature. In the process we have found evidence towards the construction of more new solutions.  相似文献   

7.
We investigate the quantum Fisher information(QFI) of a qubit-qutrit system in the background of Garfinkle–Horowitz–Strominger dilation black hole. After deriving the analytical expression of the QFI, we examine its dynamics with respect to the dilation parameter D and the state parameter γ of the system. Our results show that the QFI for the estimation of γ is a fixed value,which is independent of the parameters D and γ. And the QFI for the estimation of D varies with the parameters D and γ. Additionally, we propose an effective strategy to steer the QFI by introducing weak measurement reversal. We find that the QFI can be remarkably enhanced by adjusting the appropriate reversing measurement strengths. Our findings might provide some useful insights for the study on parameter estimation of hybrid systems in the framework of relativity theory.  相似文献   

8.
In this Letter we consider the previously proposed generalised space–time and investigate the structure of the field theory upon which it is based. In particular, we derive a SO(D,D)SO(D,D) formulation of the bosonic string as a non-linear realisation at lowest levels of E11sl1E11sl1 where l1l1 is the first fundamental representation. We give a Hamiltonian formulation of this theory and carry out its quantisation. We argue that the choice of representation of the quantum theory breaks the manifest SO(D,D)SO(D,D) symmetry but that the symmetry is manifest in a non-commutative field theory. We discuss the implications for the conjectured E11E11 symmetry and the role of the l1l1 representation.  相似文献   

9.
10.
We study Abelian strings in a fixed de Sitter background. We find that the gauge and Higgs fields extend smoothly across the cosmological horizon and that the string solutions have oscillating scalar fields outside the cosmological horizon for all currently accepted values of the cosmological constant. If the gauge to Higgs boson mass ratio is small enough, the gauge field function has a power-like behaviour, while it is oscillating outside the cosmological horizon if Higgs and gauge boson mass are comparable. Moreover, we observe that Abelian strings exist only up to a maximal value of the cosmological constant and that two branches of solutions exist that meet at this maximal value. We also construct radially excited solutions that only exist for non-vanishing values of the cosmological constant and are thus a novel feature as compared to flat space–time. Considering the effect of the de Sitter string on the space–time, we observe that the deficit angle increases with increasing cosmological constant. Lensed objects would thus be separated by a larger angle as compared to asymptotically flat space–time.  相似文献   

11.
Within all approaches to quantum gravity small violations of the Einstein Equivalence Principle are expected. This includes violations of Lorentz invariance. While usually violations of Lorentz invariance are introduced through the coupling to additional tensor fields, here a Finslerian approach is employed where violations of Lorentz invariance are incorporated as an integral part of the space–time metrics. Within such a Finslerian framework a modified dispersion relation is derived which is confronted with current high precision experiments. As a result, Finsler type deviations from the Minkowskian metric are excluded with an accuracy of 10−16.  相似文献   

12.
Gravitational radiation of binary systems can be studied by using the adiabatic approximation in General Relativity. In this approach a small astrophysical object follows a trajectory consisting of a chained series of bounded geodesics (orbits) in the outer region of a Kerr Black Hole, representing the space time created by a bigger object. In our paper, we study the entire class of orbits, both of constant radius (spherical orbits), as well as non-null eccentricity orbits, showing a number of properties on the physical parameters and trajectories. The main result is the determination of the geometrical locus of all the orbits in the space of physical parameters in Kerr space–time. This becomes a powerful tool to know if different orbits can be connected by a continuous change of their physical parameters. A discussion on the influence of different values of the angular momentum of the hole is given. Main results have been obtained by analytical methods.  相似文献   

13.
14.
Transport properties of particles and waves in spatially periodic structures that are driven by external time-dependent forces manifestly depend on the space–time symmetries of the corresponding equations of motion. A systematic analysis of these symmetries uncovers the conditions necessary for obtaining directed transport. In this work we give a unified introduction into the symmetry analysis and demonstrate its action on the motion in one-dimensional periodic, both in time and space, potentials. We further generalize the analysis to quasi-periodic drives, higher space dimensions, and quantum dynamics. Recent experimental results on the transport of cold and ultracold atomic ensembles in ac-driven optical potentials are reviewed as illustrations of theoretical considerations.  相似文献   

15.
After considering the reference case of the motion of spinning test bodies in the equatorial plane of the Schwarzschild space–time, we generalize the results to the case of the motion of a spinning particle in the equatorial plane of the Schwarzschild–de Sitter space–time. Specifically, we obtain the loci of turning points of the particle in this plane. We show that the cosmological constant affect the particle motion when the particle distance from the black hole is of the order of the inverse square root of the cosmological constant.  相似文献   

16.
17.
18.
In this paper, the first integral method and the functional variable method are used to establish exact traveling wave solutions of the space–time fractional Schrödinger–Hirota equation and the space–time fractional modified KDV–Zakharov–Kuznetsov equation in the sense of conformable fractional derivative. The results obtained confirm that proposed methods are efficient techniques for analytic treatment of a wide variety of the space–time fractional partial differential equations.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号