首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The structural characteristics, valence states, and distribution of cerium ions between the components in In2O3–CeO2 and SnO2–CeO2 nanocomposites fabricated using the impregnation method were studied. X-ray photoelectron spectroscopy (XPS) and energy-dispersive X-ray spectroscopy (EDX) were used to show that, during impregnation, cerium ions are not included into In2O3 crystals and are disposed only on their surface in the form of nano-sized crystallites or amorphous clusters. On the other side, under the contact of CeO2 clusters with a surface of SnO2 matrix crystals, cerium ions penetrate into the surface layer of these crystals. In contrast to an In2O3–CeO2 system, where the addition of CeO2 does not affect the conduction activation energy, where cerium oxide is added to SnO2, the observed increase in the resistance of a SnO2–CeO2 composite is accompanied by a sufficient increase in activation energy. These data and the XPS spectra confirm the modification of the surface layers of conductive SnO2 crystals as, a result of the penetration of cerium ions into these layers.  相似文献   

2.
Using X-ray phase analysis and impedance monitoring, it was shown that for a nanolayered structure, softened glass (V2O5 · GeO2) can take an imprint from AgI lattice and retain it while being cooled to temperatures below Tg.  相似文献   

3.
A new polyanionic cathode material, Li3V2(PO4)3·LiMn0.33Fe0.67PO4/C for lithium-ion batteries, was synthesized using a sol-gel method and with N,N-dimethyl formamide as a dispersion agent. The analysis of electron transmission spectroscopy and X-ray diffraction revealed that the composite contained two phases. The material has high crystallinity with a grain size of 20–50 nm. The valence states of Mn, V, and Fe in the composite were analyzed by X-ray photoelectron spectroscopy. The electrochemical kinetics in Li3V2(PO4)3 is effectively enhanced by the incorporation of LiMnPO4 and LiFePO4, via structure modification and reduced Li diffusion length. The Li3V2(PO4)3·LiMn0.33Fe0.67PO4/C materials displayed high rate capacity and steady cycle performance with discharge capacity remained 148 mAh g?1 after 50 cycles at the rate of 0.2C. In particular, the composite exhibited excellent reversible capacities, with the values of 157, 134, 120, 102, and 94 mAh g?1 at charge/discharge 0.2, 0.5, 1, 2, and 5C rates, respectively.  相似文献   

4.
The effect of hydrostatic pressure on the superconducting transition temperature was measured for the Hg-1223 phase of a fluorinated mercury cuprate high-temperature superconductor with Tc(optim)=38 K. The value of the Tc derivative with respect to pressure was found to be rather high (11.0 K/GPa); at P=1.5 GPa, Tc=153.5 K. The results obtained are discussed in connection with works on the synthesis of such samples.  相似文献   

5.
The temperature dependences of the quenching rate constants of the states N2 (${\rm C} \ {^{3}{ \rm \Pi }_{u}}${\rm C} \ {^{3}{ \rm \Pi }_{u}} v=0,1) by N2 (X) and of the state N2 (${\rm C} \ {^{3}{ \rm \Pi }_{u}} \ v^{\prime}=0${\rm C} \ {^{3}{ \rm \Pi }_{u}} \ v^{\prime}=0) by O2 (X) are studied. Time-resolved light emission from the gas was analyzed in the temperature range from 300 K to 210 K keeping the gas at constant density. In case of quenching by N2 (X), the quenching rate constant for the vibrational level v= 0 increases by (13 ±3)% with gas cooling whereas the quenching rate constant for v= 1 decreases by (5.0 ±2.5)% in this temperature range. For quenching by O2 (X), the quenching rate constant decreases by (3 ±2)% with gas cooling. The temperature variation of the N2 (C 3Πu v=0) emission intensity for pure nitrogen and dry air are calculated using the obtained quenching rate constants and is compared with the experimental data available in the literature.  相似文献   

6.
The reactive uptake of NO3 radicals on the surface of wetted individual X salts and of wetted X-NaCl salts (X = MgCl2 · 6H2O and MgBr2 · 6H2O) at [H2O] = 2 × 1012−2 × 1015 cm−3 and NO3 (4.8 × 1012 cm−3) was studied using a reactor with a movable insert covered with a salt coating in combination with a mass spectrometer for monitoring the initial reactant and products. The probabilities of NO3 uptake γ on X-NaCl binary salts as functions of the content of doping salt were determined. A parametric approximation of the experimental data was proposed, which makes it possible to quantitatively predict the extent of surface enrichment of a wetted binary salt coating in doping salt and its dependence on the humidity and the content of this salt in the binary mixture. It was established that the relative surface density σX of X doping salt depends on its mole fraction μX in the X-NaCl binary salt as σX = aμX (a = 2.2 for MgBr2 and 13.1 for MgCl2) over the entire humidity range covered. The contributions of the X salts to the overall uptake of NO3 at NO3 concentration typical of the tropospheric conditions ([NO3] ∼ 107 cm−3 and relative humidities of RH ≤ 20%) were estimated.  相似文献   

7.
The formation of the structural and dynamic properties of La2Zr2O7 in the process of crystallization at the isothermal annealing of initially amorphous precursors obtained by the coprecipitation of corresponding salts has been studied by neutron spectroscopy. The existence of vibrational states characteristic of hydrogen, which is in one or another of the possible chemical states and is incorporated into a solid matrix, has been detected in the spectra of amorphous and fluorite phases. The DFT calculation of the phonon density of states has been performed to analyze the energy structure of experimental phonon spectra for various phases of the La2Zr2O7 compound. The amount of hydrogen in the fluorite phase has been estimated.  相似文献   

8.
Using time-resolved photoelectron spectroscopy, the decay channels of AuO2 and Au2O2 following photoexcitation with 3.1-eV photons have been studied. For AuO2, a state with a rather long lifetime of 30 ps has been identified. Its decay path could not be determined but photodesorption can be excluded. For Au2O2, the spectra indicate O2 desorption after 3.1-eV photoexcitation on a time scale of 1 ps. While comparing these results on Au n O2 with analogous data on Ag n O2 clusters, a discernible pattern emerges: for dissociatively bound O2(AuO2, Ag3O2), there are long-living excited states which do not decay by oxygen desorption, while for molecular chemisorption (Au2O2, Ag2O2, Ag4O2, Ag8O2), the 3.1-eV photoexcitation triggers fast O2 desorption with a high quantum yield.  相似文献   

9.
A comparative μSR study of ceramic samples of the EuMn2O5 and Eu0.8Ce0.2Mn2O5 multiferroics is performed in the temperature range from 15 to 300 K. It is found that the Ce doping of the EuMn2O5 sample slightly reduces the temperature of the magnetic phase transition from T N = 45 K for the EuMn2O5 sample to T N = 42.5 K for the Eu0.8Ce0.2Mn2O5 sample. Below the temperature T N for both samples, there are two types of localization of a thermalized muon with different temperature dependences of the precession frequency of the magnetic moment of the muon in an internal magnetic field. The higher frequency in both samples refers to the initial antiferromagnetic matrix. The behavior of this frequency in Eu0.8Ce0.2Mn2O5 follows the Curie–Weiss law with the exponent β = 0.29 ± 0.02, which differs from the value β = 0.39 standard for 3D Heisenberg magnetics and is observed in EuMn2O5, because of the strong frustration of the doped sample. The temperature-independent low frequency is due to the presence of Mn3+–Mn4+ ferromagnetic pairs located along the b axis of the antiferromagnetic matrix and in the regions of phase separation, which contain such ion pairs and e g electrons recharging them. In both samples, polarization losses are the same (about 20%) and are associated with the formation of Mn4+–Mn4+ + Mu complexes near Mn3+–Mn4+ ferromagnetic pairs. In the temperature interval from 25 to 45 K, the separation of the Eu0.8Ce0.2Mn2O5 structure into two fractions where the relaxation rates of polarization of muons differ by an order of magnitude is revealed. This effect is due to a change in the state of regions of phase separation (1D superlattices) at the indicated temperatures. Such effect in EuMn2O5 is significantly weaker.  相似文献   

10.
Differential scanning calorimetry has been used to study the influence of temperature on the heat capacity of synthesized vanadates Zn2V2O7, (Cu0.56Zn1.44)V2O7, and (Cu1.0Zn1.0)V2O7. It is found that dependences Cp = f(T) have extremes. The thermodynamic properties of Zn2V2O7 have been determined.  相似文献   

11.
Direct comparison of the properties of a thin surface layer and the bulk of macroscopic hematite (α-Fe2O3) crystals was used to study the magnetic structure of the surface layer and the bulk and the processes attendant on spin-reorientation phase transition (SRT). The investigation tool was simultaneous γ-ray, X-ray, and electronic Mössbauer spectroscopy, which enabled us to study the bulk and surface properties of macroscopic samples simultaneously and to compare them directly. Direct evidence of the existence of a surface “transition layer” on hematite crystals is obtained. The existence of this layer was suggested and described by Krinchik and Zubov [JETP 69, 707 (1975)]. The study in the SRT region showed that (1) the Morin SRT in the crystal bulk occurs in a jump (as a first-order phase transition), whereas in the surface layer of about 200 nm thick, some smoothness appears in the mechanism of magnetic-moment reorientation; (2) SRT in the surface layer, as in the bulk, involves an intermediate state in which low-and high-temperature phases coexist; and (3) SRT in the surface layer occurs at a temperature several degrees higher than in the bulk. Our experimental evidence on the SRT mechanism in the surface layer correlates with the inferences from phenomenological theory developed by Kaganov [JETP 79, 1544 (1980)].  相似文献   

12.
13.
An approach is suggested to synthesize the ε-Fe2O3 particles supported on silica with the mean size of few nanometers, narrow size distribution and no admixture of any other iron oxide polymorphs. The facile synthesis is based on the pore filling impregnation method by iron sulfate (II) water solution with the following annealing procedure at ~1173 K. It is shown that the ε-Fe2O3 nanoparticles obtained are stable up to ~1173 K and possess superparamagnetic behavior up to ~870 K.  相似文献   

14.
The effect of polarizability of cation dopants on oxygen diffusion in δ-Bi2O3 is determined using molecular-dynamics simulation in which the polarizability of the ions is treated within the shell model. It is found that the magnitude of the oxygen polarizability has no affect on diffusion. However, the high cation polarizability, associated with the lone pair of electrons in Bi, is found to be the key to achieving sustained oxygen diffusion. Consistent with earlier experimental results, the oxygen diffusion path is found to be between oxygen equilibrium sites, which are displaced from the 8c oxygen sites of the fluorite lattice.  相似文献   

15.
Ab initio calculations of the atomic and electronic structures of Me(111)/α-Al2O3(0001) interfaces (Me = V, Cr, Nb, Mo, Ta, W) in the framework of density functional theory are reported. The energies of separation of metal films from oxide surfaces have been calculated. The structural and electronic factors responsible for the strong adhesion of bcc metal films on the oxygen termination of the surface of aluminum oxide have been analyzed.  相似文献   

16.
We report systematic studies on the transport properties by varying the lithium oxide content of the garnet-based solid electrolyte Li5+xBaLa2Ta2O11.5+0.5x (x=0, 0.50, 0.75, 1.00, 1.25, 1.50, 1.75, 2.00) for understanding the ionic conductivity dependence on the crystal lattice parameter and carrier concentration. Powder X-ray diffraction data of Li5+xBaLa2Ta2O11.5+0.5x (x=0, 0.50, 0.75, 1.00, 1.25, 1.50, 1.75, 2.00) indicate the existence of the garnet-like structure for any of the compositions. The cubic lattice parameter was found to increase with increasing x and reaches a maximum at x=1.00, then decreases slightly with a further increase in x. Impedance measurements obtained at 50 °C indicate a maximum of the grain-boundary resistance (Rgb) contribution to the total resistance (Rb+Rgb) at x=0.0 and a considerable decrease with increase in lithium concentration. The total (bulk + grain-boundary) and bulk ionic conductivity increase with increasing lithium content and reach a maximum at x=1.00 and then decrease slightly with further increase in x. Among the investigated compounds, Li6BaLa2Ta2O12 exhibits the highest total (bulk + grain-boundary) and bulk ionic conductivity of 1.5×10-4 and 1.8×10-4 S/cm at 50 °C, respectively. The results obtained in the present investigation of the Li5+xBaLa2Ta2O11.5+0.5x (x=0–2) series clearly revealed that the lithium content plays a major role in decreasing the grain boundary resistance contribution to the total resistance and also in increasing the ionic conductivity of the garnet-like compound. PACS 66.10.Ed; 82.45.Gj; 82.47.Aa  相似文献   

17.
Superparamagnetic iron oxide nanoparticles are used in diverse applications, including optical magnetic recording, catalysts, gas sensors, targeted drug delivery, magnetic resonance imaging, and hyperthermic malignant cell therapy. Combustion synthesis of nanoparticles has significant advantages, including improved nanoparticle property control and commercial production rate capability with minimal post-processing. In the current study, superparamagnetic iron oxide nanoparticles were produced by flame synthesis using a coflow flame. The effect of flame configuration (diffusion and inverse diffusion), flame temperature, and additive loading on the final iron oxide nanoparticle morphology, elemental composition, and particle size were analyzed by transmission electron microscopy (TEM), high-resolution TEM (HR-TEM), energy dispersive spectroscopy (EDS), and Raman spectroscopy. The synthesized nanoparticles were primarily composed of two well known forms of iron oxide, namely hematite αFe2O3 and magnetite Fe3O4. We found that the synthesized nanoparticles were smaller (6–12 nm) for an inverse diffusion flame as compared to a diffusion flame configuration (50–60 nm) when CH4, O2, Ar, and N2 gas flow rates were kept constant. In order to investigate the effect of flame temperature, CH4, O2, Ar gas flow rates were kept constant, and N2 gas was added as a coolant to the system. TEM analysis of iron oxide nanoparticles synthesized using an inverse diffusion flame configuration with N2 cooling demonstrated that particles no larger than 50–60 nm in diameter can be grown, indicating that nanoparticles did not coalesce in the cooler flame. Raman spectroscopy showed that these nanoparticles were primarily magnetite, as opposed to the primarily hematite nanoparticles produced in the hot flame configuration. In order to understand the effect of additive loading on iron oxide nanoparticle morphology, an Ar stream carrying titanium-tetra-isopropoxide (TTIP) was flowed through the outer annulus along with the CH4 in the inverse diffusion flame configuration. When particles were synthesized in the presence of the TTIP additive, larger monodispersed individual particles (50–90 nm) were synthesized as observed by TEM. In this article, we show that iron oxide nanoparticles of varied morphology, composition, and size can be synthesized and controlled by varying flame configuration, flame temperature, and additive loading.  相似文献   

18.
Composite solid electrolytes in the system (1???x)Li2CO3xAl2O3, with x?=?0.0–0.5 (mole), were synthesized by a sol–gel method. The synthesis carried out at low temperature resulted in voluminous and fluffy products. The obtained materials were characterized by X-ray diffraction, differential scanning calorimetry, scanning electron microscopy/energy-dispersive X-ray, Fourier transform infrared spectroscopy and AC impedance spectroscopy. Structural analysis of the samples showed an amorphous feature of Li2CO3 and traces of α-LiAlO2, γ-LiAlO2 and LiAl5O8. The prepared composite samples possess high ionic conductivities at 130–180 °C on account of the presence of lithium aluminates as well as the formation of a high concentration of an amorphous phase of Li2CO3 via this sol–gel preparative technique.  相似文献   

19.
The terahertz dielectric response of LuFe2O4 is investigated by terahertz time-domain spectroscopy over a temperature range of 6–290 K. It is revealed that besides the central mode associated with the charge-ordered state, a soft TO1 mode at below ∼240 K is identified indicating the existence of displacing ferroelectricity, in addition to the charge-ordering-induced ferroelectricity at below 320 K. The anomaly of the soft mode at ∼180 K reflects the magnetoelectric correlation between the soft TO1 mode and the spin/charge fluctuations revealed recently. Finally, the magnetic property at below ∼240 K is discussed.  相似文献   

20.
Bismuth Zinc niobate (Bi1.5Zn1.0Nb1.5O7) thin films were deposited by pulsed laser deposition (PLD) method on fused silica substrates at different oxygen pressures. The structural, microwave dielectric and optical properties of these thin films were systematically studied for both the as-deposited and the annealed films at 600°C. The as-deposited films were all amorphous in nature but crystallized on annealing at 600°C in air. The surface morphology as studied by atomic force microscopy (AFM) reveals ultra-fine grains in the case of as-deposited thin films and cluster grain morphology on annealing. The as-deposited films exhibit refractive index in the range of 2.36–2.53 (at a wavelength of 750 nm) with an optical absorption edge value of 3.30–3.52 eV and a maximum dielectric constant of 11 at 12.15 GHz. On annealing the films at 600°C they crystallize to the cubic pyrochlore structure accompanied by an increase in band gap, refractive index and microwave dielectric constant.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号