首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
AF1410钢的层裂断裂特性研究   总被引:1,自引:0,他引:1       下载免费PDF全文
 利用一级轻气炮作为加载手段,对AF1410钢的层裂特性进行了研究,获得了AF1410钢的Hugoniot关系、塑性应变率、层裂强度以及层裂片厚度等动态力学参数。对回收的AF1410钢样品进行了断口分析和金相分析,从宏、微观角度分析了AF1410钢在不同应变率下的断裂特性。  相似文献   

2.
The problems of a pulsed strength of continuum media are considered in terms of the structural-time approach that is based on the concept of the incubation fracture time. This approach makes it possible to describe phenomena that arise under high-velocity external effects. A limiting condition that determines the instant of rupture or breakdown is proposed on the basis of the structural-time approach. A way to interpret and to determine the incubation time is proposed. A phenomenological model of an electric breakdown of solid dielectrics is formulated. Examples are considered where the structural-time approach is applied to problems of spall fracture, crack initiation, and a pulsed breakdown of dielectrics. A procedure for describing the time dependence of the electric strength (volt-second characteristic) is described in detail. The results of the calculations are found to be in good agreement with experimental data.  相似文献   

3.
在神光-Ⅱ装置上利用强激光加载铝材料进行高应变率(高于106s-1)层裂实验,研究不同初始温度下高纯铝材料的动态损伤特性。采用任意反射面速度干涉仪测量样品自由面速度剖面,由自由面速度剖面计算纯铝样品层裂强度与屈服应力。结果表明:随着温度升高,材料层裂强度减小,屈服应力增大。对激光加载前后样品进行金相分析,观察不同初始温度下纯铝材料的微介观结构变化及其损伤特性。结果表明:随着温度升高,样品晶粒尺度缓慢增大,但在873K(近熔点)时晶粒尺度急剧增加;层裂面附近小孔洞数目较多,孔洞尺寸也较大,而远离层裂面处,孔洞数目相对较少,且尺寸也较小;材料的断裂方式随温度升高由沿晶断裂为主逐渐变为穿晶断裂为主。  相似文献   

4.
A method for processing the results of dynamic spall fracture tests, based on the exact solution of the wave equation, and its commonly used simplified version based on the assumed unique relation between the free surface velocity drop and the ultimate medium fracture stress, are analyzed. Using the considered exact solutions of the wave technique, tensile stress pulses during spalling are determined. The obtained stress levels at the fracture point are compared with the spall strength calculated by the velocity drop technique. The cases of agreement and disagreement of the results obtained using both techniques are shown. By the example of differently shaped loading pulses, possible scenarios of sample fracture are presented, in particular, the probability of the fracture delay effect is shown, which can be lost in the simplified processing method.  相似文献   

5.
The spall tests under the plane tensile pulses for resistance spot weld(RSW) of QP980 steel are performed by using a gun system.The velocity histories of free surfaces of the RSW are measured with the laser velocity interferometer system for any reflector.The recovered specimens are investigated with an Olympus GX71 metallographic microscope and a scanning electron microscope(SEM).The measured velocity histories are explained and used to evaluate the tension stresses in the RSW applying the characteristic theory and the assumption of Gathers.The spall strength(1977-2784 MPa) of the RSW for QP980 steel is determined based on the measured and simulated velocity histories.The spall mechanism of the RSW is brittle fracture in view of the SEM investigation of the recovered specimen.The micrographs of the as-received QP980 steel,the initial and recovered RSW of this steel for the spall test are compared to reveal the microstructure evolution during the welding and spall process.It is indicated that during the welding thermal cycle,the local martensitic phase transformation is dependent on the location within the fusion zone and the heat affected zone.It is presented that the transformation at high strain rate may be cancelled by other phenomenon while the evolution of weld defects is obvious during the spall process.It may be the stress triaxiality and strain rate effect of the RSW strength or the dynamic load-carrying capacity of the RSW structure that the spall strength of the RSW for QP980 steel is much higher than the uniaxial compression yield strength(1200 MPa) of the martensite phase in QP980 steel.Due to the weld defects in the center of the RSW,the spall strength of the RSW should be less than the conventional spall strength or the dynamic load-carrying capacity of condensed structure.  相似文献   

6.
The plastic deformation and the onset of fracture of single-crystal metals under shock-wave loading have been studied using aluminum as an example by the molecular dynamics method. The mechanisms of plastic deformation under compression in a shock wave and under tension in rarefaction waves have been investigated. The influence of the defect structure formed in the compression wave on the spall strength and the fracture mechanism has been analyzed. The dependence of the spall strength on the strain rate has been obtained.  相似文献   

7.
The Hugoniot elastic limit, the yield strength, and the spall strength of polycrystalline M1 copper and single-crystal (110) and (111) copper are determined during shock compression up to 8 GPa in the temperature range 20–1080°C from an analysis of the free-surface velocity profiles recorded with VISAR laser velocimeter. The measurements show that all copper samples exhibit strong athermal hardening (increase in the Hugoniot elastic limit) near the melting temperature. Copper single crystals have a very low elastic limit in the temperature range up to 600°C, this limit increases sharply as the temperature increases to 1000°C, and it depends on the crystallographic orientation of a single crystal. The temperature dependence of the spall strength has a threshold character for all copper samples. Copper single crystals demonstrate higher resistance to spall fracture; however, near the melting temperature, the difference between the spall strengths of the copper single crystals and M1 copper becomes insignificant, 50% of the initial level.  相似文献   

8.
Some aspects of the available experimental results on the spall fracture of steel and duralumin sample caused by the explosion of a sheet HE charge are discussed. In particular, the location of the damage zone is considered based on the condition that the density of deformation energy is larger than the density of energy of formation new surfaces upon continuity break. The localization of the complete damage zone is determined by the threshold values the induction time and tensile stress. No dynamic branch of longevity associated with spall fractures is observed at times shorter than 10−7 s.  相似文献   

9.
Threshold diagrams of erosion and spall fracture are constructed based on the concept of incubation time of the fracture. It is shown that in the case of a defectless material, the incubation time can be estimated from the spallation or erosion experimental data. The temperature dependence of the threshold velocities of microparticle impact is considered. The effect of increasing the dynamic yield stress upon an increase in the surface temperature of the target material is obtained for small-size microparticles. The relationship with an analogous effect in the spallation experiments is discussed.  相似文献   

10.
动态断裂过程的数值分析及LY-12铝的层裂   总被引:9,自引:4,他引:5  
 本文从文献[1]中用于分析柱壳动态膨胀断裂过程的损伤度函数出发,将它推广到对一维应变下层裂过程的数值模拟研究。试件材料为LY-12铝,其特性方程取为含粘性的本构方程形式。数值计算结果很好地再现了实测自由面速度ufs随时间t的变化过程,并表现出层裂强度σc及层裂面上的临界损伤度αc都分别是应变率εc'的单调递增函数关系。σcc'的这种变化规律在许多文献中已屡见报道,例如可见文献[2-3]。在105 s-1~106 s-1应变率范围内,σcc'关系可以表示为εc'exp(-11.4αc)=2 100 s-1,这个式子可以作为一种层裂判据使用。数值计算还给出了层裂片的损伤度剖面,其形状特征与Barbee等对回收试件的细观测量结果在定性上一致。  相似文献   

11.
 基于对层裂问题的理解和相关文献,就自由面速度剖面解读层裂问题的局限性提出了一些看法。指出:自由面速度剖面测量给出的层裂破坏过程是间接信息,而不是直接信息,用它确定的理论模型和数值模拟参数,也许并没有真实地反映层裂过程的物理本质;层裂强度常被人们用来表征材料在高应变率下的抗拉伸能力,但是在目前的层裂强度计算公式中没有考虑损伤介质对波剖面传播的影响,使得计算结果明显偏低;传统的单点测量得到的结果有很大的局限性,对于层裂问题,采用概率评估或者置信度评估,也许更符合真实情况。建议:为了全面真实地评价层裂问题中的物理、力学过程,应该加快发展更多的实验探测和诊断技术,尤其是对内部损伤状态的观测。  相似文献   

12.
The relaxation properties and fracture of glycerol, silicone oil, transformer oil, and water have been studied experimentally under shock wave loading. The power-law strain rate dependences of the stress amplitude and spall strength were found for the compression and rarefaction fronts, respectively. It was shown that temperature has a strong influence on the spall strength of glycerol near the phase transformation temperature. The power laws reflect a self-similar nature of the momentum transfer and fracture mechanisms of liquids that are conventionally observed in solids and governed by the mechanisms of defect-induced structural relaxation. The mechanisms of viscoelasticity are related to the metastable states that may give rise to a collective behavior of displacement field fluctuations (microshearing) in liquids and thus provide a viscoplastic response of liquids under high strain rate loading.  相似文献   

13.
一种新的概念性层裂模型   总被引:1,自引:0,他引:1       下载免费PDF全文
 在重建Cochran-Banner模型的基础上提出了一种新的概念性层裂模型。这种新模型仅保留Cochran-Banner模型中的强度函数,重新定义损伤,并抛弃了基本假设:一旦微损伤形成,使微损伤演化远远易于使固体进一步体积应变,进而修正了差分微元中固体比容的计算。在新的模型中,一旦拉伸应力达到层裂强度,重新定义的损伤将由强度函数确定的应力松弛方程、计及损伤的能量守恒方程、状态方程以及本构方程等一系列封闭方程组确定。新模型中也仅包含两个参数:层裂强度及临界损伤度,它们的确定能使在一定初、边值条件下的层裂试验的数值计算结果与实验测得的靶自由面速度历史或靶-低阻抗界面应力历史以及回收观测的层裂面上的损伤一致。强调指出,选定强度函数或应力松弛方程提供了确定损伤的可能,同时排除了任何外加的损伤演化方程。  相似文献   

14.
裴晓阳  彭辉  贺红亮  李平 《物理学报》2015,64(5):54601-054601
研究了加载应力幅值对延性金属高纯无氧铜动态损伤演化特性的影响. 层裂实验在一级轻气炮上开展, 利用不同的飞片击靶速度实现不同加载应力幅值(2.5 GPa, 2.75 GPa和3.75 GPa), 采用DISAR位移干涉诊断技术测量样品自由面的速度剖面, 利用基于白光轴向色差的表面轮廓测试技术测试软回收的样品截面. 结果显示: 随着加载应力幅值的升高, 层裂强度几乎没有变化, 但自由面速度剖面上Pull back信号后的回跳速率和幅值显著增大, 损伤演化速率显著升高.进一步分析表明: 延性金属动态损伤演化过程中微孔洞成核对加载应力幅值单一因素不敏感, 但加载应力幅值是微孔洞长大和聚集的主导因素之一.  相似文献   

15.
The dynamic tensile strength (spall strength) of tin and lead melts has been measured by a found method. Comparison with similar measurements of the spall strength of these metals at room temperature shows that melting reduces the spall strength by at least an order of magnitude. The spall strength of liquid metals is a smaller fraction of the extremely possible (“ideal”) strength than that for water and organic liquids.  相似文献   

16.
The Hugoniot elastic limit and the spall strength of aluminum and copper samples pressed from a mixture of a metallic powder and 2–5 wt % C60 fullerene powder are measured under a shock loading pressure up to 6 GPa and a strain rate of 105 s?1 by recording and analyzing full wave profiles using a VISAR laser interferometer. It is shown that a 5% C60 fullerene addition to an initial aluminum sample leads to an increase in its Hugoniot elastic limit by an order of magnitude. Mixture copper samples with 2% fullerene also exhibit a multiple increase in the elastic limit as compared to commercial-grade copper. The elastic limits calculated from the wave profiles are 0.82–1.56 GPa for aluminum samples and 1.35–3.46 GPa for copper samples depending on the sample porosity. The spall strength of both aluminum and copper samples with fullerene additions decreases approximately threefold because of the effect of high-hardness fullerene particles, which serve as tensile stress concentrators in a material under dynamic fracture.  相似文献   

17.
Energy-based theory of dynamic fracture (spall) was examined for 21 steels (including different heat treatments). The explosive loading was used. Experimental results suggest that the present theory of this fracture should be modified in order to include the models of the observed microstructure changes. Two spall mechanisms of the spall transitions were found which were not reported up to present.  相似文献   

18.
Based on the registration and analysis of the full wave profiles, the Hugoniot elastic limit and spall strength of ceramics based on tungsten carbide with different cobalt content are measured. We also study the influence of the cobalt content on the mechanical characteristics of tungsten carbide such as hardness, fracture strength, Young’s modulus, shear modulus, and sound velocity. It is shown that in the process of spalling, the failure stresses grow and the dynamic elastic limit decreases almost linearly within the scatter of their values with growing cobalt content; moreover, the value of the Hugoniot elastic limit is abruptly practically halved as the cobalt content grows from 0 to 2 wt %.  相似文献   

19.
In the present paper, an Eulerian scheme combined with the hybrid particle level set method for numerical simulation of spall fracture due to high-velocity impact is proposed. An axisymmetric framework is established, based on an improved CE/SE scheme, to solve the high-velocity impact problems with large deformations, high strain rates and spall fractures. The hybrid particle level set method is adopted for tracking material interfaces and describing the formation and propagation of a crack. A novel representation of crack by level set is proposed. Numerical simulations are carried out and compared to the corresponding experimental results. The numerical results are in good agreement with the experimental data. The edge effects are reproduced and the decrease of scab thickness with increase in impact velocity is observed owing to the numerical analysis. It is proved that our computational technique is feasible and reliable for analyzing the spall fracture.  相似文献   

20.
The spallation behaviors of AI+0.2 wt% ~(10)B targets and neutron irradiated AI+0.2 wt% ~(10)B targets with 5 nm radius helium bubble subjected to direct laser ablation are presented. It is found that the spall strength increases significantly with the tensile strain rate, and the helium bubble or boron inclusions in aluminum reduces the spall strength of materials by 34%. However, slight difference is observed in the spall strength of unirradiated samples compared with the irradiated sample with helium bubbles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号