首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We propose a method for selecting variables in latent class analysis, which is the most common model-based clustering method for discrete data. The method assesses a variable’s usefulness for clustering by comparing two models, given the clustering variables already selected. In one model the variable contributes information about cluster allocation beyond that contained in the already selected variables, and in the other model it does not. A headlong search algorithm is used to explore the model space and select clustering variables. In simulated datasets we found that the method selected the correct clustering variables, and also led to improvements in classification performance and in accuracy of the choice of the number of classes. In two real datasets, our method discovered the same group structure with fewer variables. In a dataset from the International HapMap Project consisting of 639 single nucleotide polymorphisms (SNPs) from 210 members of different groups, our method discovered the same group structure with a much smaller number of SNPs.  相似文献   

2.
This article establishes a general formulation for Bayesian model-based clustering, in which subset labels are exchangeable, and items are also exchangeable, possibly up to covariate effects. The notational framework is rich enough to encompass a variety of existing procedures, including some recently discussed methods involving stochastic search or hierarchical clustering, but more importantly allows the formulation of clustering procedures that are optimal with respect to a specified loss function. Our focus is on loss functions based on pairwise coincidences, that is, whether pairs of items are clustered into the same subset or not.

Optimization of the posterior expected loss function can be formulated as a binary integer programming problem, which can be readily solved by standard software when clustering a modest number of items, but quickly becomes impractical as problem scale increases. To combat this, a new heuristic item-swapping algorithm is introduced. This performs well in our numerical experiments, on both simulated and real data examples. The article includes a comparison of the statistical performance of the (approximate) optimal clustering with earlier methods that are model-based but ad hoc in their detailed definition.  相似文献   

3.

In this paper, an ordinal multilevel latent Markov model based on separate random effects is proposed. In detail, two distinct second-level discrete effects are considered in the model, one affecting the initial probability vector and the other affecting the transition probability matrix of the first-level ordinal latent Markov process. To model these separate effects, we consider a bi-dimensional mixture specification that allows to avoid unverifiable assumptions on the random effect distribution and to derive a two-way clustering of second-level units. Starting from a general model where the two random effects are dependent, we also obtain the independence model as a special case. The proposal is applied to data on the physical health status of a sample of elderly residents grouped into nursing homes. A simulation study assessing the performance of the proposal is also included.

  相似文献   

4.
We prove polynomial-time solvability of a large class of clustering problems where a weighted set of items has to be partitioned into clusters with respect to some balancing constraints. The data points are weighted with respect to different features and the clusters adhere to given lower and upper bounds on the total weight of their points with respect to each of these features. Further the weight-contribution of a vector to a cluster can depend on the cluster it is assigned to. Our interest in these types of clustering problems is motivated by an application in land consolidation where the ability to perform this kind of balancing is crucial.Our framework maximizes an objective function that is convex in the summed-up utility of the items in each cluster. Despite hardness of convex maximization and many related problems, for fixed dimension and number of clusters, we are able to show that our clustering model is solvable in time polynomial in the number of items if the weight-balancing restrictions are defined using vectors from a fixed, finite domain. We conclude our discussion with a new, efficient model and algorithm for land consolidation.  相似文献   

5.
In the min-Knapsack problem, one is given a set of items, each having a certain cost and weight. The objective is to select a subset with minimum cost, such that the sum of the weights is not smaller than a given constant. In this paper, we introduce an extension of the min-Knapsack problem with additional “compactness constraints” (mKPC), stating that selected items cannot lie too far apart. This extension has applications in statistics, including in algorithms for change-point detection in time series. We propose three solution methods for the mKPC. The first two methods use the same Mixed-Integer Programming (MIP) formulation but with two different approaches: passing the complete model with a quadratic number of constraints to a black-box MIP solver or dynamically separating the constraints using a branch-and-cut algorithm. Numerical experiments highlight the advantages of this dynamic separation. The third approach is a dynamic programming labelling algorithm. Finally, we focus on the particular case of the unit-cost mKPC (1c-mKPC), which has a specific interpretation in the context of the statistical applications mentioned above. We prove that the 1c-mKPC is solvable in polynomial time with a different ad-hoc dynamic programming algorithm. Experimental results show that this algorithm vastly outperforms both generic approaches for the mKPC and a simple greedy heuristic from the literature.  相似文献   

6.
A model based clustering procedure for data of mixed type, clustMD, is developed using a latent variable model. It is proposed that a latent variable, following a mixture of Gaussian distributions, generates the observed data of mixed type. The observed data may be any combination of continuous, binary, ordinal or nominal variables. clustMD employs a parsimonious covariance structure for the latent variables, leading to a suite of six clustering models that vary in complexity and provide an elegant and unified approach to clustering mixed data. An expectation maximisation (EM) algorithm is used to estimate clustMD; in the presence of nominal data a Monte Carlo EM algorithm is required. The clustMD model is illustrated by clustering simulated mixed type data and prostate cancer patients, on whom mixed data have been recorded.  相似文献   

7.
In this paper, we propose a new kernel-based fuzzy clustering algorithm which tries to find the best clustering results using optimal parameters of each kernel in each cluster. It is known that data with nonlinear relationships can be separated using one of the kernel-based fuzzy clustering methods. Two common fuzzy clustering approaches are: clustering with a single kernel and clustering with multiple kernels. While clustering with a single kernel doesn’t work well with “multiple-density” clusters, multiple kernel-based fuzzy clustering tries to find an optimal linear weighted combination of kernels with initial fixed (not necessarily the best) parameters. Our algorithm is an extension of the single kernel-based fuzzy c-means and the multiple kernel-based fuzzy clustering algorithms. In this algorithm, there is no need to give “good” parameters of each kernel and no need to give an initial “good” number of kernels. Every cluster will be characterized by a Gaussian kernel with optimal parameters. In order to show its effective clustering performance, we have compared it to other similar clustering algorithms using different databases and different clustering validity measures.  相似文献   

8.
In many fault detection problems, we want to detect or identify defective items in a sample set by using the minimum number of tests. Group testing is for the scenario where each test is on a subset of items, and tells whether the subset contains at least one defective item or not. In this paper, we present an efficient randomized group testing procedure that determines the exact number of defectives in a sample set with high success probability.  相似文献   

9.
Clustering has been widely used to partition data into groups so that the degree of association is high among members of the same group and low among members of different groups. Though many effective and efficient clustering algorithms have been developed and deployed, most of them still suffer from the lack of automatic or online decision for optimal number of clusters. In this paper, we define clustering gain as a measure for clustering optimality, which is based on the squared error sum as a clustering algorithm proceeds. When the measure is applied to a hierarchical clustering algorithm, an optimal number of clusters can be found. Our clustering measure shows good performance producing intuitively reasonable clustering configurations in Euclidean space according to the evidence from experimental results. Furthermore, the measure can be utilized to estimate the desired number of clusters for partitional clustering methods as well. Therefore, the clustering gain measure provides a promising technique for achieving a higher level of quality for a wide range of clustering methods.  相似文献   

10.
In this paper we present an original top-down hierarchical classification algorithm. In our approach we associate to each decomposition a ‘degree of separability’ which is used to evaluate the efficiency of the decomposition. In particular, it shows whether or not the classes are well separated and also whether or not they are homogeneous. This algorithm can be applied to items defined by real and bounded numbers.  相似文献   

11.
Block clustering aims to reveal homogeneous block structures in a data table. Among the different approaches of block clustering, we consider here a model-based method: the Gaussian latent block model for continuous data which is an extension of the Gaussian mixture model for one-way clustering. For a given data table, several candidate models are usually examined, which differ for example in the number of clusters. Model selection then becomes a critical issue. To this end, we develop a criterion based on an approximation of the integrated classification likelihood for the Gaussian latent block model, and propose a Bayesian information criterion-like variant following the same pattern. We also propose a non-asymptotic exact criterion, thus circumventing the controversial definition of the asymptotic regime arising from the dual nature of the rows and columns in co-clustering. The experimental results show steady performances of these criteria for medium to large data tables.  相似文献   

12.
Complex data sets are often unmanageable unless they can be subdivided and simplified in an intelligent manner. Clustering is a technique that is used in data mining and scientific analysis for partitioning a data set into groups of similar or nearby items. Hierarchical clustering is an important and well‐studied clustering method involving both top‐down and bottom‐up subdivisions of data. In this article we address the parallel complexity of hierarchical clustering. We describe known sequential algorithms for top‐down and bottom‐up hierarchical clustering. The top‐down algorithm can be parallelized, and when there are n points to be clustered, we provide an O(log n)‐time, n2‐processor Crew Pram algorithm that computes the same output as its corresponding sequential algorithm. We define a natural decision problem based on bottom‐up hierarchical clustering, and add this HIERARCHICAL CLUSTERING PROBLEM (HCP) to the slowly growing list of CC‐complete problems, thereby showing that HCP is one of the computationally most difficult problems in the COMPARATOR CIRCUIT VALUE PROBLEM class. This class contains a variety of interesting problems, and now for the first time a problem from data mining as well. By proving that HCP is CC‐complete, we have demonstrated that HCP is very unlikely to have an NC algorithm. This result is in sharp contrast to the NC algorithm which we give for the top‐down sequential approach, and the result surprisingly shows that the parallel complexities of the top‐down and bottom‐up approaches are different, unless CC equals NC. In addition, we provide a compendium of all known CC‐complete problems. © 2008 Wiley Periodicals, Inc. Complexity, 2008  相似文献   

13.
The paper advocates the use of a new fuzzy-based clustering algorithm for document categorization. Each document/datum will be represented as a fuzzy set. In this respect, the fuzzy clustering algorithm, will be constrained additionally in order to cluster fuzzy sets. Then, one needs to find a metric measure in order to detect the overlapping between documents and the cluster prototype (category). In this respect, we use one of the interclass probabilistic reparability measures known as Bhattacharyya distance, which will be incorporated in the general scheme of the fuzzy c-means algorithm for measuring the overlapping between fuzzy sets. This enables the introduction of fuzziness in the document clustering in the sense that it allows a single document to belong to more than one category. This is in line with semantic multiple interpretations conveyed by single words, which support multiple membership to several classes. Performances of the algorithms will be illustrated using a case study from the construction sector.  相似文献   

14.
Latent class analysis (LCA) for categorical data is a model-based clustering and classification technique applied in a wide range of fields including the social sciences, machine learning, psychiatry, public health, and epidemiology. Its central assumption is conditional independence of the indicators given the latent class, i.e. “local independence”; violations can appear as model misfit, often leading LCA practitioners to increase the number of classes. However, when not all of the local dependence is of substantive scientific interest this leads to two options, that are both problematic: modeling uninterpretable classes, or retaining a lower number of substantive classes but incurring bias in the final results and classifications of interest due to remaining assumption violations. This paper suggests an alternative procedure, applicable in cases when the number of substantive classes is known in advance, or when substantive interest is otherwise well-defined. I suggest, in such cases, to model substantive local dependencies as additional discrete latent variables, while absorbing nuisance dependencies in additional parameters. An example application to the estimation of misclassification and turnover rates of the decision to vote in elections of 9510 Dutch residents demonstrates the advantages of this procedure relative to increasing the number of classes.  相似文献   

15.
In this paper, we investigate the problem of determining the number of clusters in the k-modes based categorical data clustering process. We propose a new categorical data clustering algorithm with automatic selection of k. The new algorithm extends the k-modes clustering algorithm by introducing a penalty term to the objective function to make more clusters compete for objects. In the new objective function, we employ a regularization parameter to control the number of clusters in a clustering process. Instead of finding k directly, we choose a suitable value of regularization parameter such that the corresponding clustering result is the most stable one among all the generated clustering results. Experimental results on synthetic data sets and the real data sets are used to demonstrate the effectiveness of the proposed algorithm.  相似文献   

16.
本文基于隐变量的有限混合模型, 提出了一种用于有序数据的Bayes聚类方法\bd 我们采用EM算法获得模型参数的估计, 用BIC准则确定类数, 用类似于Bayes判别的方法对各观测分类\bd 模拟研究结果表明, 本文提出的方法有较好的聚类效果, 对于中等规模的数据集, 计算量是可以接受的.  相似文献   

17.
聚类集成方法能够有效综合不同的聚类结果,提高聚类的精确度和稳定性.提出了一个基于矩阵变换的聚类集成优化模型,模型通过矩阵变换代替传统方法中的聚类配准模式,使得优化模型更加简洁,然后给出了求解该优化模型的叠代算法.实验表明,提出的聚类集成方法能够有效提高聚类集成的稳定性和精确度,并且在聚类数目比较少时,算法有着较低的时间复杂度.  相似文献   

18.
Scalability of clustering algorithms is a critical issue facing the data mining community. One method to handle this issue is to use only a subset of all instances. This paper develops an optimization-based approach to the partitional clustering problem using an algorithm specifically designed for noisy performance, which is a problem that arises when using a subset of instances. Numerical results show that computation time can be dramatically reduced by using a partial set of instances without sacrificing solution quality. In addition, these results are more persuasive as the size of the problem is larger.  相似文献   

19.
A mixture approach to clustering is an important technique in cluster analysis. A mixture of multivariate multinomial distributions is usually used to analyze categorical data with latent class model. The parameter estimation is an important step for a mixture distribution. Described here are four approaches to estimating the parameters of a mixture of multivariate multinomial distributions. The first approach is an extended maximum likelihood (ML) method. The second approach is based on the well-known expectation maximization (EM) algorithm. The third approach is the classification maximum likelihood (CML) algorithm. In this paper, we propose a new approach using the so-called fuzzy class model and then create the fuzzy classification maximum likelihood (FCML) approach for categorical data. The accuracy, robustness and effectiveness of these four types of algorithms for estimating the parameters of multivariate binomial mixtures are compared using real empirical data and samples drawn from the multivariate binomial mixtures of two classes. The results show that the proposed FCML algorithm presents better accuracy, robustness and effectiveness. Overall, the FCML algorithm has the superiority over the ML, EM and CML algorithms. Thus, we recommend FCML as another good tool for estimating the parameters of mixture multivariate multinomial models.  相似文献   

20.
This paper presents new bounds, heuristics, and an exact algorithm for the Pallet Loading Problem (PLP). PLP maximizes the number of boxes placed on a rectangular pallet. All boxes have identical rectangular dimensions and, when placed, must be located completely within the pallet. Boxes may be rotated 90° so long as they are placed with edges parallel to the pallet’s edges. The set of all PLP instances with an area ratio (pallet area divided by box area) less than 101 boxes can be represented by 3,080,730 equivalent classes. Our G5-heuristic finds optimal solutions to 3,073,724 of these 3,080,730 classes and in the remaining 7006 classes only differs from the best known bound by one box. We develop three other heuristics that solve another 54 instances. Finally, we solve the 6952 remaining classes with our exact HVZ algorithm. Only a subset of these classes has been solved previously.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号