首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The latest advances in the area of polyoxometalate (POM)‐based inorganic/organic hybrid materials prepared by self‐assembly, covalent modification, and supramolecular interactions are presented. This Review is composed of five sections and documents the effect of organic cations on the formation of novel POMs, surfactant encapsulated POM‐based hybrids, polymeric POM/organic hybrid materials, POMs‐containing ionic crystals, and covalently functionalized POMs. In addition to their role in the charge‐balancing, of anionic POMs, the crucial role of organic cations in the formation and functionalization of POM‐based hybrid materials is discussed. DOI 10.1002/tcr.201100002  相似文献   

2.
多金属氧酸盐的修饰化学是近年发展起来的一个热点研究领域,其中多酸的亚胺化是一种非常有效的使多酸有机官能化的方法.有机胺能够将其π电子扩展到无机框架,产生较强的d-π相互作用,从而多金属氧酸盐有机胺衍生物和远程有机官能团可以作为构筑单元构建更为复杂的多金属氧酸盐-有机杂化材料.本文综述了作者研究小组运用密度泛函理论方法研究系列Lindqvist型多酸亚胺衍生物的稳定性、成键特征和非线性光学性质,深入探讨该类有机-无机杂化衍生物非线性光学性质的起源.  相似文献   

3.
We report the design and preparation of multifunctional hybrid nanomaterials through the stabilization of gold nanoparticles with thiol-functionalised hybrid organic–inorganic polyoxometalates (POMs). The covalent attachment of the hybrid POM forms new nanocomposites that are stable at temperatures and pH values which destroy analogous electrostatically functionalised nanocomposites. Photoelectrochemical analysis revealed the unique photochemical and redox properties of these systems.  相似文献   

4.
We report the design and preparation of multifunctional hybrid nanomaterials through the stabilization of gold nanoparticles with thiol‐functionalised hybrid organic–inorganic polyoxometalates (POMs). The covalent attachment of the hybrid POM forms new nanocomposites that are stable at temperatures and pH values which destroy analogous electrostatically functionalised nanocomposites. Photoelectrochemical analysis revealed the unique photochemical and redox properties of these systems.  相似文献   

5.
Amphiphilic organo‐polyoxometalates (POMs) used in the radical emulsion polymerization of styrene allowed the preparation in aqueous medium of stable 50–100 nm polystyrene–POM composite latexes. Thanks to the presence of a trithiocarbonate group in the POM amphiphile, POMs could be covalently linked to the polymer particle surface. The chemical and catalytic integrity of the POMs was confirmed, and the POM‐mediated surface photoactivity of the latexes was demonstrated by the spatially controlled nucleation of silver nanoparticles at the periphery of the composites.  相似文献   

6.
A series of polyoxometalates (POMs) that incorporate the highest‐nuclearity Ln clusters that have been observed in such structures to date (Ln26 , Ln=La and Ce) are described, which exhibit giant multishell configurations (Ln⊂W6⊂Ln26⊂W100). Their structures are remarkably different from known giant POMs that feature multiple Ln ions. In particular, the incorporated Ln–O clusters with a nuclearity of 26 are significantly larger than known high‐nuclearity (≤10) Ln–O clusters in POM chemistry. Furthermore, they also contain the largest number of La and Ce centers for any POM reported to date and represent a new kind of rare giant POMs with more than 100 W atoms. Interestingly, the La26‐containing POM can undergo a single‐crystal to single‐crystal structural transformation in the presence of various transition‐metal ions, such as Cu2+, Co2+, and Ni2+, from an inorganic molecular nanocluster into an inorganic–organic hybrid extended framework that is built from POM building blocks with even higher‐nuclearity La28 clusters bridged by transition‐metal complexes.  相似文献   

7.
Polyoxometalates (POMs) are molecular metal‐oxide anions applied in energy conversion and storage, manipulation of biomolecules, catalysis, as well as materials design and assembly. Although often overlooked, the interplay of intrinsically anionic POMs with organic and inorganic cations is crucial to control POM self‐assembly, stabilization, solubility, and function. Beyond simple alkali metals and ammonium, chemically diverse cations including dendrimers, polyvalent metals, metal complexes, amphiphiles, and alkaloids allow tailoring properties for known applications, and those yet to be discovered. This review provides an overview of fundamental POM–cation interactions in solution, the resulting solid‐state compounds, and behavior and properties that emerge from these POM–cation interactions. We will explore how application‐inspired research has exploited cation‐controlled design to discover new POM materials, which in turn has led to the quest for fundamental understanding of POM–cation interactions.  相似文献   

8.
Herein, we report the synthesis and characterization of a new class of hybrid Wells–Dawson polyoxometalate (POM) containing a diphosphoryl group (P2O6X) of the general formula [P2W17O57(P2O6X)]6− (X=O, NH, or CR1R2). Modifying the bridging unit X was found to impact the redox potentials of the POM. The ease with which a range of α-functionalized diphosphonic acids (X=CR1R2) can be prepared provides possibilities to access diverse functionalized hybrid POMs. Compared to existing phosphonate hybrid Wells–Dawson POMs, diphosphoryl-substituted POMs offer a wider tunable redox window and enhanced hydrolytic stability. This study provides a basis for the rational design and synthesis of next-generation hybrid Wells–Dawson POMs.  相似文献   

9.
将一种可有机功能化的Wells-Dawson POM与降冰片烯相连接,制备了多金属氧簇降冰片烯单体.再利用活性可控的开环易位聚合方法(ROMP),在Grubbs 3~(rd)催化剂的作用下,合成了聚(多金属氧簇降冰片烯)-聚(己酸降冰片烯)的杂化嵌段和无规共聚物(H-CPs),分别简写为Poly(POM)_m-b-Poly(COOH)_n和Poly(POM)_m-r-Poly(COOH)_n.采用~1H-NMR、~(31)P-NMR和FTIR等方法对共聚物结构进行表征,确认我们成功地合成了由共价键连接这2种单体形成的H-CPs.最后,利用带有光散射和红外探测器的凝胶渗透色谱(SEC)测定聚合物的绝对分子量和分子量分布,证明所得到的H-CPs不仅分子量可控,而且分子量分布系数较窄.最后,研究了H-CPs催化氧化四氢噻吩(THT)成环丁亚砜(THTO)反应,结果表明,相比于聚(多金属氧簇)的均聚物(Poly(POM)),H-CPs的催化活性有所下降,原因是POM催化剂含量较低以及H-CPs在催化介质中溶解性的差异.  相似文献   

10.
In this paper, we present a novel strategy for fabricating polyoxometalate (POM)-based photochromic silica hybrid films. To combine metal nanoparticles (NPs) into the POMs embedded silica matrix, furthermore, we realized the controllable in situ synthesis of metal NPs in the film by utilizing the reduction property of POMs existing in the reduced state. Through electrostatic encapsulation with hydroxyl-terminated surfactants, the POMs with good redox property can be covalently grafted onto a silica matrix by means of a sol-gel approach, and stable silica sol-gel thin films containing surfactant-encapsulated POMs can be obtained. The functional hybrid film exhibits both the transparent and easily processible properties of silica matrix and the stable and reversible photochromism of POMs. In addition, well-dispersed POMs in a hydrophobic microenvironment within the hybrid film can be used as reductants for the in situ synthesis of metal NPs. More significantly, the size and location of NPs can be tuned by controlling the adsorption time of metal ions and mask blocking the surface. The hybrid film containing both POMs and metal NPs with patterned morphology can be obtained, which has potential applications in optical display, memory, catalysis, microelectronic devices and antibacterial materials.  相似文献   

11.
Polyoxometalates (POMs), as inorganic ligands, can endow metal nanocrystals (NCs) with unique reactivities on account of their characteristic redox properties. In the present work, we present a facile POM‐mediated one‐pot aqueous synthesis method for the production of single‐crystalline Pd NCs with controlled shapes and sizes. The POMs could function as both reducing and stabilizing agents in the formation of NCs, and thus gave a fine control over the nucleation and growth kinetics of NCs. The prepared POM‐stabilized Pd NCs exhibited excellent catalytic activity and stability for electrocatalytic (formic acid oxidation) and catalytic (Suzuki coupling) reactions compared to Pd NCs prepared without the POMs. This shows that the POMs play a pivotal role in determining the catalytic performance, as well as the growth, of NCs. We envision that the present approach can offer a convenient way to develop efficient NC‐based catalyst systems.  相似文献   

12.
The specific interactions of anionic metal-oxo clusters, known as polyoxometalates (POMs), with proteins can be leveraged for a wide range of analytical and biomedical applications. For example, POMs have been developed as selective catalysts that can induce protein modifications and have also been shown to facilitate protein crystallization, both of which are instrumental in the structural characterization of proteins. POMs can also be used for selective protein separation and enzyme inhibition, which makes them promising therapeutic agents. Hence, understanding POM-protein interactions is essential for the development of POM-based materials and their implementation in several fields. In this Review we summarize in detail the key insights that have been gained so far on POM-protein interactions. Emphasis is also given to hybrid POMs functionalized with organic ligands to prompt further research in this direction owing to the promising recent results on tuning POM-protein interactions through POM functionalization.  相似文献   

13.
Post‐functionalization of organically modified polyoxometalates (POMs) is a powerful synthetic tool to devise functional building blocks for the rational elaboration of POM‐based molecular materials. In this personal account we focus on iodoaryl‐terminated POM platforms, describe reliable routes to the synthesis of covalent organic‐inorganic POM‐based hybrids and their integration into advanced molecular architectures or multi‐scale assemblies as well as their immobilization onto surfaces. Valorisation of the remarkable redox properties of POMs in the fields of artificial synthesis and molecular electronic is especially considered.  相似文献   

14.
A novel method was developed to synthesize organic–inorganic hybrid hollow sub‐microspheres (HHSs) through the addition of colloidal SiO2. The hydrolysis rate of 3‐(methacryloyloxy)propyltrimethoxysilane (MPS) was accelerated by SiO2 particles; meanwhile, the condensation rate of the hydrolytic species was decelerated. Thus, the hydrolytic monomers and oligomers of MPS were preserved as emulsifiers. These emulsifiers can then emulsify the isopentyl acetate (PEA) to form a steady O/W emulsion. The HHSs were produced by subsequent free radical polymerization and removal of the oil core. The hydrolytic MPS acted as emulsifiers and polymerizable monomers at the emulsification and polymerization stage, respectively. Thus, extra emulsifiers, co‐emulsifiers, and organic monomers were omitted, which simplified the synthesis process. The good dispersion of HHSs in water and oil, as well as the EDX results, indicated the organic–inorganic hybrid structure of HHSs.  相似文献   

15.
Rational synthesis of covalently bonded organic-inorganic hybrids   总被引:2,自引:0,他引:2  
Hybrid materials based on covalently linked inorganic polyoxometalates (POMs) and organic species containing a delocalized pi system have drawn increasing attention. These hybrids, traditionally prepared by cluster assembly approaches that lack predictability and controllability, can now be synthesized through common organic reactions by using organically functionalized POM clusters as building blocks. This minireview highlights some of the most recent advances on a particular type of hybrids where the organic and inorganic components are connected by an imido linkage.  相似文献   

16.
Polyoxometalates (POMs) are an emerging class of inorganic metal oxides, which over the last decades demonstrated promising biological activities by the virtue of their great diversity in structures and properties. They possess high potential for the inhibition of various tumor types; however, their unspecific interactions with biomolecules and toxicity impede their clinical usage. The current focus of the field of biologically active POMs lies on organically functionalized and POM‐based nanocomposite structures as these hybrids show enhanced anticancer activity and significantly reduced toxicity towards normal cells in comparison to unmodified POMs. Although the antitumor activity of POMs is well documented, their mechanisms of action are still not well understood. In this Review, an overview is given of the cytotoxic effects of POMs with a special focus on POM‐based hybrid and nanocomposite structures. Furthermore, we aim to provide proposed mode of actions and to identify molecular targets. POMs are expected to develop into the next generation of anticancer drugs that selectively target cancer cells while sparing healthy cells.  相似文献   

17.
Efficient polyoxometalate (POM)-based Lewis acid-base catalysts of the rare-earth-metal-containing POMs (TBA(6)RE-POM, RE = Y(3+), Nd(3+), Eu(3+), Gd(3+), Tb(3+), or Dy(3+)) were designed and synthesized by reactions of TBA(4)H(4)[γ-SiW(10)O(36)] (TBA = tetra-n-butylammonium) with RE(acac)(3) (acac = acetylacetonato). TBA(6)RE-POM consisted of two silicotungstate units pillared by two rare-earth-metal cations. Nucleophilic oxygen-enriched surfaces of negatively charged POMs and the incorporated rare-earth-metal cations could work as Lewis bases and Lewis acids, respectively. Consequently, cyanosilylation of carbonyl compounds with trimethylsilyl cyanide ((TMS)CN) was efficiently promoted in the presence of the rare-earth-metal-containing POMs via the simultaneous activation of coupling partners on the same POM molecules. POMs with larger metal cations showed higher catalytic activities for cyanosilylation because of the higher activation ability of C═O bonds (higher Lewis acidities) and sterically less hindered Lewis acid sites. Among the POM catalysts examined, the neodymium-containing POM showed remarkable catalytic performance for cyanosilylation of various kinds of structurally diverse ketones and aldehydes, giving the corresponding cyanohydrin trimethylsilyl ethers in high yields (13 substrates, 94-99%). In particular, the turnover frequency (714,000 h(-1)) and the turnover number (23,800) for the cyanosilylation of n-hexanal were of the highest level among those of previously reported catalysts.  相似文献   

18.
A novel ternary nanocomposite, Pd nanoparticles(NPs)/polyoxometalates(POMs)/reduced graphene oxide(rGO), was prepared by a green, mild, electrochemical-reductionassisted assembly. It is worth noting that the Keggin-type POM acts as an electrocatalyst as well as a bridging molecule. During the reduction process, POMs transfer the electrons from the electrode to GO, leading to a deep reduction of GO and the content of oxygen-containing groups is decreased to around 6.1%. Meanwhile, the strong adsorption effect between the POM clusters and rGO nanosheets induces the spontaneous assembly of POM on r GO in a uniformly dispersed state, forming a nanocomposite. The ternary Pd NPs/POMs/rGO nanocomposite exhibits higher electrocatalytic activities, better electrochemical stability, and higher resistance to CO poisoning than the Pd/C catalyst towards the formic acid oxidation(FAOR). Especially, the Pd/PW_(12)/rGO exhibits the best electrocatalytic performance among three Pd/POMs/rGO composites(POMs = PW_(12), SiW_(12), PMo_(12)).  相似文献   

19.
We report the synthesis of the first organo‐POM with thermoresponsive properties. Our concept will provide chemists with a new tool to design POMs whose solubility is reversibly controllable through an external stimulus. POM–polymer TBA7[POM]‐poly(N,N‐diethylacrylamide) (POM–PDEAAm), was prepared by grafting PDEAAm‐NH2 (obtained by RAFT polymerization) onto the activated Dawson acyl‐POM, α2‐[P2W17O61SnCH2CH2C(?O)]6?. Extensive MS analysis was used to monitor the chain‐functionalization steps and to confirm the formation of the hybrid. Aqueous solutions of the (NH4)7[POM–PDEAAm] exhibited a LCST of 38 °C. Thus, the solubility/aggregation of the hybrid was reversibly controlled by changing the temperature. Above 38 °C, the solution became cloudy, and cleared again upon cooling. Dynamic light scattering (DLS) revealed the formation of small aggregates in the range 100 nm. We assumed that the charged POM head units prevented the formation of the larger‐scattering aggregates that are usually observed for PDEAAm, and promoted the formation of micelle‐like structures. The conjugate exhibited a temperature transition, which was different from that of the polymer and depended on the counterions associated with the POM. This result demonstrates the potential for merging organic (in this case, polymer) and inorganic structures to afford materials that exhibit new properties.  相似文献   

20.
The coming big-data era has created a huge demand for next-generation memory technologies with characters of higher data-storage densities, faster access speeds, lower power consumption and better environmental compatibility. In this field, the design of resistive switching active materials is pivotal but challengeable. Polyoxometalates (POMs) are promising candidates for next-generation molecular memristors due to their versatile redox characters, excellent electron reservoirs and good compatibility/convenience in microelectronics processing. In this review, five kinds of POM-based active materials in nonvolatile memories (inorganic POMs, crystalline organic-inorganic hybrid POMOFs, polymer modified POMs, POM/transition metal oxides composites and the deposition of POM on metal surfaces) were described. The components of POMs active materials, device fabrications, device parameters, and resistive switching mechanisms relative to their structures were summarized. Finally, challenges and future perspectives of POMs-based memristors were also presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号