首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this work, the heat transfer characteristics of supercritical pressure CO2 in vertical heating tube with 10 mm inner diameter under high mass flux were investigated by using an SST k-ω turbulent model. The influences of inlet temperature, heat flux, mass flux, buoyancy and flow acceleration on the heat transfer of supercritical pressure CO2 were discussed. Our results show that the buoyancy and flow acceleration effect based on single phase fluid assumption fail to explain the current simulation results. Here, supercritical pseudo-boiling theory is introduced to deal with heat transfer of scCO2. scCO2 is treated to have a heterogeneous structure consisting of vapor-like fluid and liquid-like fluid. A physical model of scCO2 heat transfer in vertical heating tube was established containing a gas-like layer near the wall and a liquid-like fluid layer. Detailed distribution of thermophysical properties and turbulence in radial direction show that scCO2 heat transfer is greatly affected by the thickness of gas-like film, thermal properties of gas-like film and turbulent kinetic energy in the near-wall region. Buoyancy parameters Bu < 10−5, Bu* < 5.6 × 10−7 and flow acceleration parameter Kv < 3 × 10−6 in this paper, which indicate that buoyancy effect and flow acceleration effect has no influence on heat transfer of scCO2 under high mass fluxes. This work successfully explains the heat transfer mechanism of supercritical fluid under high mass flux.  相似文献   

2.
A technique based on pulse heating of a wire probe (resistance thermometer) in a constant-heating power regime is developed and used for studies of comparative heat-transfer intensity in supercritical fluids (SCFs) in the pressure and temperature ranges from 1p c to 4–6p c and from 0.6T c to 1.6T c , respectively (p c and T c are critical pressure and temperature). The characteristic parameters of the setup used are as follows: heating -pulse length, 1–10 ms; density of heat flux through the probe surface, 1–10 MW/m2; and repeatability of the selected power value in a series of pulses, not worse than 0.1%. A sharp decrease in the heat-transfer intensity in SCFs compared to that observed at subcritical temperatures is revealed.  相似文献   

3.
A technique of electronic control of the probe heating power is developed using the method of controlled pulse heating of a wire probe, that is a resistance thermometer, was developed. An apparatus implementing this technique was fabricated. The characteristic parameters of the apparatus are as follows: the heating pulse length, 1 to 10 ms; the heat flux density through the surface of a 20 μm probe, 1 to 10 MW/m2; repeatability of selected power value in a series of pulses is on a level of 0.05%. As an example, the constant heating power mode is applied for comparing the thermal resistance of nanofluids in the region of stable states of liquid and superheated (with respect to the liquid-vapor equilibrium temperature of the base liquid) ones. The parameter was the content of Al2O3 nanoparticles in the base liquid (isopropanol).  相似文献   

4.
采用SST k-w低雷诺数湍流模型对加热条件下超临界压力CO2在内径di=22.14 mm,加热长度Lh=2440 mm水平圆管内三维稳态流动与传热特性进行了数值计算.通过超临界CO2在水平圆管内的流动传热实验数据验证了数值模型的可靠性和准确性.首先,研究了超临界压力CO2在水平圆管内的流动传热特点,基于超临界CO2在类临界温度Tpc处发生类液-类气“相变”的假设,揭示了水平圆管顶母线和底母线区域不同的流动传热行为.然后,分析了热流密度qw和质量流速G对水平圆管内超临界压力CO2流动换热的影响,通过获取流体域内的物性分布、速度分布和湍流分布等详细信息,重点解释了不同热流密度qw和质量流速G下顶母线内壁温度Tw,i分布产生差异的传热机理,分析结果确定了类气膜厚度d、类气膜性质、轴向速度u和湍动能k是影响顶母线壁温分布差异的主要因素.研究结果可以为超临界压力CO2换热装置的优化设计和安全运行提供理论指导.  相似文献   

5.
自激振荡流热管脉冲加热强化传热实验研究   总被引:9,自引:2,他引:7  
自激振荡流热管也称为脉动热管,是一种新型高效的传热元件。本文提出了采用脉冲加热代替常规连续热源加热强化自激振荡流热管传热的方法,并对其进行了实验研究。实验结果显示,脉冲加热时热管冷、热端壁面温度的振荡频率明显大于连续加热热管的壁面温度振荡频率。在相同的加热功率下,当脉冲宽度在200-1000 ms时,脉冲加热热管的传输热流量与当量导热系数均大于连续加热热管的传输功率和当量导热系数.这表明脉冲加热强化自激振荡流热管传热的方法是可行的.  相似文献   

6.
Observations of microcrystalline graphite subjected to picosecond laser pulses reveal the formation of a liquid phase with a subsequent transition to a uniform amorphous state of a surface layer upon solidification. This phenomenon is observed on a definite type of graphite and with the radiation incident on a plane parallel to the sixfold symmetry axis, and only for certain parameters of the laser pulse. A structural analysis of the amorphous phase is performed by electron microscopy and Raman scattering spectroscopy. A periodic structure with a period of the order of the wavelength of the heating pulse is formed in the heating region. The “rulings” of this periodic structure are oriented in the direction of polarization of the heating pulse. A study of the reflection kinetics of the probe laser pulse showed that the characteristic existence time of the liquid phase and of the solidification process is ∼10−10 s. Pis’ma Zh. éksp. Teor. Fiz. 66, No. 10, 661–665 (25 November 1997)  相似文献   

7.
针对短脉冲高功率热流作用下的薄壁金属导热问题,基于傅里叶导热模型,采用固液耦合计算方法对金属瞬态温度特性进行了数值仿真,并分析了液体工质流速及固体材料物性参数对金属温度瞬态响应和分布的影响作用。分析结果表明:温度响应特性与时间尺度有关,在单次脉冲作用下,在ms量级内热量才能开始通过水侧对流散热散出,25ms后金属内部温度渐趋平衡;在连续脉冲作用下,金属内部温度逐渐升高,一定时间后温度变化达到动态平衡,壁面温度在一定范围内波动;停止加热后,在2s内温度逐渐降低至初始状态。提高水的流速和固体壁面热扩散系数均可降低壁面温度,且缩短温度趋衡所需时间。  相似文献   

8.
 为了考察切向强迫气流对激光辐照下树脂基复合材料热响应的影响,基于边界层换热理论,研究了切向气流与靶面的对流换热系数和热分解气体对表面热交换的覆盖效应,并用有限差分法对激光辐照下树脂基复合材料的1维热响应模型进行数值求解。数值计算表明:高速切向气流的存在会加速靶材表面与外部环境的热交换,从而明显降低激光对靶材的加热效率;边界层换热理论给出的对流换热系数和覆盖因子是合理有效的,适用于数值模拟切向气流对激光辐照下树脂基复合材料热响应的影响;向靶材表面溢出的热分解气体对靶材表面与外部环境的热交换有一定的抑制作用,但影响较小,基本可以忽略不计。  相似文献   

9.
The thermal behaviour of a solid sorption generator of active carbon/alcohol machine, is studied during heating and cooling phases with a preheated air flow. A bicylindrical walls generator that contains 0.9 kg of a granular adsorbent in the presence of residual gas is tested during a cycle of an average duration of 3 hours; the grains of active carbon are rod-shaped of 0.003 m diameter and 0.008 m average length. The thermal contact conductance of adsorbent to the wall has an important influence on the rate of heat transfer between the generator and the external source of heat. In the absence of alcohol, heat transfer occuring without mass transfer in active carbon is essentially due to the conduction. A numerical bidimensional model allows one to justify experimentally the observed evolution and proposes thermal contact conductance between active carbon pellets and the generator wall. A parametric study of the thermal contact conductance gives 6.5 W·m−2·K−1 as the best value. A simulation of heating and cooling phases with average conductance values between 5 and 30 W·m−2·K−1 gives model estimated heating and cooling phases duration.  相似文献   

10.
薄层物料受激光脉冲热作用的数值模拟   总被引:1,自引:0,他引:1  
有别于传统的将加热光源作为第二类边界条件的传热计算方法,考虑到激光与薄层多孔材料热相互作用,将激光加热处理为在被加热物料内沿光程按指数规律衰减的内加热源.考虑到薄层多孔材料在大功率微秒脉冲激光作用下可能会出现极为明显的非傅立叶效应,采用非傅立叶导热的双曲型模型描述多孔材料内的传热过程,并用有限差分方法对其进行数值求解,重点分析并讨论了薄层多孔材料的非傅立叶导热现象与物料的光学性质之间的相关关系.  相似文献   

11.
The influence of the doping level on the effect of the temperature bistability in a silicon wafer upon radiative heat transfer between the wafer and the elements of the heating system is studied. Theoretical transfer characteristics are constructed for a silicon wafer doped with donor and acceptor impurities. These characteristics are compared with the transfer characteristics obtained during heating and cooling of wafers with the hole conduction (with dopant concentrations of 1015, 2 × 1016, and 3 × 1017 cm?3) and electron conduction (with impurity concentrations of 1015 and 8 × 1018 cm?3) in a thermal reactor of the rapid thermal annealing setup. It is found that the width and height of the hysteresis loop decrease with increasing dopant concentration and are almost independent of the type of conduction of the silicon wafer. The critical value of the impurity concentration of both types is 1.4 × 1017 cm?3. For this concentration, the loop width vanishes, and the height corresponds to the minimal value of the temperature jump (~200 K). The mechanism of temperature bistability in the silicon wafer upon radiative heat transfer is discussed.  相似文献   

12.
One of the ways to make cost-competitive electricity, from concentrated solar thermal energy, is increasing the thermoelectric conversion efficiency. To achieve this objective, the most promising scheme is a molten salt central receiver, coupled to a supercritical carbon dioxide cycle. A key element to be developed in this scheme is the molten salt-to-CO2 heat exchanger. This paper presents a heat exchanger design that avoids the molten salt plugging and the mechanical stress due to the high pressure of the CO2, while improving the heat transfer of the supercritical phase, due to its compactness with a high heat transfer area. This design is based on a honeycomb-like configuration, in which a thermal unit consists of a circular channel for the molten salt surrounded by six smaller trapezoidal ducts for the CO2. Further, an optimization based on the exergy destruction minimization has been accomplished, obtained the best working conditions of this heat exchanger: a temperature approach of 50 °C between both streams and a CO2 pressure drop of 2.7 bar.  相似文献   

13.
The effect of supercritical water and pyrite on the transformations of propylene upon the uniform heating (1.5 K/min) of reagents to 718 K is studied. The products are analyzed by IR and 1H NMR spectroscopy, mass-spectrometry and gas chromatography/mass-spectrometry. It is established based on the temperature dependences of the pressure of reagents that the addition of pyrite in the absence of water gives rise to a decrease in the starting temperature of propylene oligomerization. In the absence of pyrite, the addition of water suppresses propylene oligomerization. A synergetic effect of supercritical water and pyrite on the degree of conversion of propylene is revealed. It is shown that hydrogen sulfide, thiols, and methyl-derivatives of thiophene are formed in the presence of pyrite, as well as the yield of aromatic and polyaromatic hydrocarbons increases. The mechanisms of the observed processes are discussed.  相似文献   

14.
An experimental study of condensation heat transfer characteristics of flow inside horizontal micro-fin tubes is carried out using R410A, R22, and R32 as the test fluids. This study especially focuses on the influence of heat transfer area upon the condensation heat transfer coefficients. The test sections were made of double tubes using the counter-flow type; the refrigerants condensation inside the test tube enabled heat to exchange with cooling water that flows from the annular side. The saturation temperature and pressure of the refrigerants were measured at the inlet and outlet of the test sections to defined state of refrigerants, and the surface temperatures of the tube were measured. A differential pressure transducer directly measured the pressure drops in the test section. The heat transfer coefficients and pressure drops were calculated using the experimental data. The condensation heat transfer coefficient was measured at the saturation temperature of 48°C with mass fluxes of 50–380 kg/(m2s) and heat fluxes of 3–12 kW/m2. The values of experimental heat transfer coefficient results are compared with the predicted values from the existing correlations in the literature, and a new condensation heat transfer coefficient correlation is proposed.  相似文献   

15.
This article directly investigates the effect of a cooling medium's coolant temperature on the condensation of the refrigerant R-134a. The study presents an experimental investigation into condensation heat transfer, vapor quality, and pressure drop of R-134a flowing through a commercial annular helicoidal pipe under the severe climatic conditions of a Kuwait summer. The quality of the refrigerant is calculated using the temperature and pressure obtained from the experiment. Measurements were performed for refrigerant mass fluxes ranging from 50 to 650 kg/m2s, with a cooling water flow Reynolds number range of 950 to 15,000 at a fixed gas saturation temperature of 42°C and cooling wall temperatures of 5°C, 10°C, and 20°C. The data shows that with an increase of refrigerant mass flux, the overall condensation heat transfer coefficients of R-134a increased, and the pressure drops also increased. However, with the increase of mass flux of cooling water, the refrigerant-side heat transfer coefficients decreased. Using low mass flux in a helicoidal tube improves the heat transfer coefficient. Furthermore, selecting low wall temperature for the cooling medium gives a higher refrigerant-side heat transfer coefficient.  相似文献   

16.
Results of numerical investigation of the effect of heat boundary layer thickness in front of a sudden expansion of a round tube on turbulent transfer in the zone of flow separation, attachment, and relaxation are presented. Before separation the flow was hydrodynamically stable, and the heat layer in front of expansion could change its thickness in maximally possible limits: from zero to a half of tube diameter. The Reynolds number varied from 6.7·103 to 1.33·105. It was found that the growth of heat layer thickness leads to reduction of heat transfer intensity in the separation area and moving away of the coordinate of maximal heat transfer from the place of tube expansion. Generalizing dependence for the maximum Nusselt number is given for variation of the heat layer thickness. Comparison with experimental data of [1] proved the main behavior tendencies of heat and mass transfer processes in separation flows behind a backward-facing step with different thermal prehistory.  相似文献   

17.
Several weightless experiment with supercritical fluids have shown that thermal boundary layers can be destabilized when submitted to a harmonic vibration. A study of the phenomenon is given here in a regular fluid during a sudden change of wall temperature in the presence of harmonic tangential vibrations and under weightlessness. A semi-infinite space is filled with a fluid and bounded by a flat wall oscillating in its plane. For this configuration, a state with the fluid velocity parallel to the wall is possible but this fluid motion does not influence the heat transfer. Then the propagation of thermal waves can be described by classical relations. The stability of this state is studied under the assumption of a “frozen” temperature profile. The vibration frequency is assumed to be high such that the viscous boundary layer thickness is small in comparison with the thermal boundary layer thickness. The calculations show that the instability develops when the thickness of the thermal boundary layer attains a critical value. The wavelength of the most dangerous perturbations is found to be about twice the critical thermal boundary layer thickness.  相似文献   

18.
作为一种新型微通道换热器,印刷电路板式换热器(Printed Circuit Heat Exchanger,PCHE)因比表面积大、耐高压和低温、海上适应性强以及便于模块化等特点,近年来逐渐成为浮式LNG接收站和浮式储存及再气化装置的主低温换热器首选.针对改进后的错列S型翅片,对超临界LNG在翅片通道内的流动传热特性展...  相似文献   

19.
The special features of heat transfer in a supercritical fluid were considered for the example of two problems, those of Rayleigh-Bénard convection in a horizontal layer heated from below and nonstationary heat transfer in a closed volume with heated boundaries. Isentropic equilibrium of a compressible medium that obeyed the van der Waals equation of state was studied. The calculation results were generalized, and the special features of convective heat transfer in a supercritical fluid beyond the stability threshold of hydrostatic equilibrium were discussed. The results of numerical and experimental studies of the relaxation of density and temperature nonuniformities as the temperature of volume walls changed were presented. The calculations were performed using the complete system of Navier-Stokes equations and the equation of state of an ideal or van der Waals gas.  相似文献   

20.
During the process of deforming a crystal, a high pressure is developed near the tip of mobile cracks, which may in turn produce a new ground state by thermal electron transfer. Upon sudden release of pressure, the electron can either relax to one atmosphere ground state or remain in the excited state potential well long enough to relax to one atmosphere and radiatively transfer back to the ground state. For analysing the pressure induced thermal population of the excited state, the mechanoluminescence(ML) and high pressure photoluminescence(PL) of several organic and inorganic crystals were measured. The study indicated that usual pressure coefficient of energy shift of the order of 50–100 cm−1/kbar and the stress at the crack-tip of the order of 5–10 kbar, are not sufficient to cause the thermal population of the excited state. If by any means the product of pressure coefficient and stress at the mobile crack-tip can be increased by 50 to 100 times, then the thermal population of the excited states may take place. Using the pressure coefficient of energy shift and the difference in ML and PL spectra, and using independently the change in relative intensities of the vibronic peaks, the pressure at the emitting mechanoluminescent crystal sites is evaluated and it is found to be of the order of several kbar which varies from crystal to crystal.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号