首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The gradient descent method minimizes an unconstrained nonlinear optimization problem with \({\mathcal {O}}(1/\sqrt{K})\), where K is the number of iterations performed by the gradient method. Traditionally, this analysis is obtained for smooth objective functions having Lipschitz continuous gradients. This paper aims to consider a more general class of nonlinear programming problems in which functions have Hölder continuous gradients. More precisely, for any function f in this class, denoted by \({{\mathcal {C}}}^{1,\nu }_L\), there is a \(\nu \in (0,1]\) and \(L>0\) such that for all \(\mathbf{x,y}\in {{\mathbb {R}}}^n\) the relation \(\Vert \nabla f(\mathbf{x})-\nabla f(\mathbf{y})\Vert \le L \Vert \mathbf{x}-\mathbf{y}\Vert ^{\nu }\) holds. We prove that the gradient descent method converges globally to a stationary point and exhibits a convergence rate of \({\mathcal {O}}(1/K^{\frac{\nu }{\nu +1}})\) when the step-size is chosen properly, i.e., less than \([\frac{\nu +1}{L}]^{\frac{1}{\nu }}\Vert \nabla f(\mathbf{x}_k)\Vert ^{\frac{1}{\nu }-1}\). Moreover, the algorithm employs \({\mathcal {O}}(1/\epsilon ^{\frac{1}{\nu }+1})\) number of calls to an oracle to find \({\bar{\mathbf{x}}}\) such that \(\Vert \nabla f({{\bar{\mathbf{x}}}})\Vert <\epsilon \).  相似文献   

2.
We prove a dichotomy between absolute continuity and singularity of the Ginibre point process \(\mathsf {G}\) and its reduced Palm measures \(\{\mathsf {G}_{\mathbf {x}}, \mathbf {x} \in \mathbb {C}^{\ell }, \ell = 0,1,2\ldots \}\), namely, reduced Palm measures \(\mathsf {G}_{\mathbf {x}}\) and \(\mathsf {G}_{\mathbf {y}}\) for \(\mathbf {x} \in \mathbb {C}^{\ell }\) and \(\mathbf {y} \in \mathbb {C}^{n}\) are mutually absolutely continuous if and only if \(\ell = n\); they are singular each other if and only if \(\ell \not = n\). Furthermore, we give an explicit expression of the Radon–Nikodym density \(d\mathsf {G}_{\mathbf {x}}/d \mathsf {G}_{\mathbf {y}}\) for \(\mathbf {x}, \mathbf {y} \in \mathbb {C}^{\ell }\).  相似文献   

3.
The first main theorem of this paper asserts that any \((\sigma , \tau )\)-derivation d, under certain conditions, either is a \(\sigma \)-derivation or is a scalar multiple of (\(\sigma - \tau \)), i.e. \(d = \lambda (\sigma - \tau )\) for some \(\lambda \in \mathbb {C} \backslash \{0\}\). By using this characterization, we achieve a result concerning the automatic continuity of \((\sigma , \tau \))-derivations on Banach algebras which reads as follows. Let \(\mathcal {A}\) be a unital, commutative, semi-simple Banach algebra, and let \(\sigma , \tau : \mathcal {A} \rightarrow \mathcal {A}\) be two distinct endomorphisms such that \(\varphi \sigma (\mathbf e )\) and \(\varphi \tau (\mathbf e )\) are non-zero complex numbers for all \(\varphi \in \Phi _\mathcal {A}\). If \(d : \mathcal {A} \rightarrow \mathcal {A}\) is a \((\sigma , \tau )\)-derivation such that \(\varphi d\) is a non-zero linear functional for every \(\varphi \in \Phi _\mathcal {A}\), then d is automatically continuous. As another objective of this research, we prove that if \(\mathfrak {M}\) is a commutative von Neumann algebra and \(\sigma :\mathfrak {M} \rightarrow \mathfrak {M}\) is an endomorphism, then every Jordan \(\sigma \)-derivation \(d:\mathfrak {M} \rightarrow \mathfrak {M}\) is identically zero.  相似文献   

4.
This paper is concerned with the existence of positive solution to a class of singular fourth order elliptic equation of Kirchhoff type
$$\begin{aligned} \triangle ^2 u-\lambda M(\Vert \nabla u\Vert ^2)\triangle u-\frac{\mu }{\vert x\vert ^4}u=\frac{h(x)}{u^\gamma }+k(x)u^\alpha , \end{aligned}$$
under Navier boundary conditions, \(u=\triangle u=0\). Here \(\varOmega \subset {\mathbf {R}}^N\), \(N\ge 1\) is a bounded \(C^4\)-domain, \(0\in \varOmega \), h(x) and k(x) are positive continuous functions, \(\gamma \in (0,1)\), \(\alpha \in (0,1)\) and \(M:{\mathbf {R}}^+\rightarrow {\mathbf {R}}^+\) is a continuous function. By using Galerkin method and sharp angle lemma, we will show that this problem has a positive solution for \(\lambda > \frac{\mu }{\mu ^*m_0}\) and \(0<\mu <\mu ^*\). Here \(\mu ^*=\Big (\frac{N(N-4)}{4}\Big )^2\) is the best constant in the Hardy inequality. Besides, if \(\mu =0\), \(\lambda >0\) and hk are Lipschitz functions, we show that this problem has a positive smooth solution. If \(h,k\in C^{2,\,\theta _0}(\overline{\varOmega })\) for some \(\theta _0\in (0,1)\), then this problem has a positive classical solution.
  相似文献   

5.
In the first part of this paper, we consider nonlinear extension of frame theory by introducing bi-Lipschitz maps F between Banach spaces. Our linear model of bi-Lipschitz maps is the analysis operator associated with Hilbert frames, p-frames, Banach frames, g-frames and fusion frames. In general Banach space setting, stable algorithms to reconstruct a signal x from its noisy measurement \(F(x)+\epsilon \) may not exist. In this paper, we establish exponential convergence of two iterative reconstruction algorithms when F is not too far from some bounded below linear operator with bounded pseudo-inverse, and when F is a well-localized map between two Banach spaces with dense Hilbert subspaces. The crucial step to prove the latter conclusion is a novel fixed point theorem for a well-localized map on a Banach space. In the second part of this paper, we consider stable reconstruction of sparse signals in a union \(\mathbf{A}\) of closed linear subspaces of a Hilbert space \(\mathbf{H}\) from their nonlinear measurements. We introduce an optimization framework called a sparse approximation triple \((\mathbf{A}, \mathbf{M}, \mathbf{H})\), and show that the minimizer
$$\begin{aligned} x^*=\mathrm{argmin}_{\hat{x}\in {\mathbf M}\ \mathrm{with} \ \Vert F(\hat{x})-F(x^0)\Vert \le \epsilon } \Vert \hat{x}\Vert _{\mathbf M} \end{aligned}$$
provides a suboptimal approximation to the original sparse signal \(x^0\in \mathbf{A}\) when the measurement map F has the sparse Riesz property and the almost linear property on \({\mathbf A}\). The above two new properties are shown to be satisfied when F is not far away from a linear measurement operator T having the restricted isometry property.
  相似文献   

6.
Let F be an \(L^2\)-normalized Hecke Maaß cusp form for \(\Gamma _0(N) \subseteq {\mathrm{SL}}_{n}({\mathbb {Z}})\) with Laplace eigenvalue \(\lambda _F\). If \(\Omega \) is a compact subset of \(\Gamma _0(N)\backslash {\mathrm{PGL}}_n/\mathrm{PO}_{n}\), we show the bound \(\Vert F|_{\Omega }\Vert _{\infty } \ll _{ \Omega } N^{\varepsilon } \lambda _F^{n(n-1)/8 - \delta }\) for some constant \(\delta = \delta _n> 0\) depending only on n.  相似文献   

7.
Let \(\Omega \subset \mathbb {R}^n\), \(n\ge 2\), be a bounded domain satisfying the separation property. We show that the following conditions are equivalent:
  1. (i)
    \(\Omega \) is a John domain;
     
  2. (ii)
    for a fixed \(p\in (1,\infty )\), the Korn inequality holds for each \(\mathbf {u}\in W^{1,p}(\Omega ,\mathbb {R}^n)\) satisfying \(\int _\Omega \frac{\partial u_i}{\partial x_j}-\frac{\partial u_j}{\partial x_i}\,dx=0\), \(1\le i,j\le n\),
    $$\begin{aligned} \Vert D\mathbf {u}\Vert _{L^p(\Omega )}\le C_K(\Omega , p)\Vert \epsilon (\mathbf {u})\Vert _{L^p(\Omega )}; \qquad (K_{p}) \end{aligned}$$
     
  3. (ii’)
    for all \(p\in (1,\infty )\), \((K_p)\) holds on \(\Omega \);
     
  4. (iii)
    for a fixed \(p\in (1,\infty )\), for each \(f\in L^p(\Omega )\) with vanishing mean value on \(\Omega \), there exists a solution \(\mathbf {v}\in W^{1,p}_0(\Omega ,\mathbb {R}^n)\) to the equation \(\mathrm {div}\,\mathbf {v}=f\) with
    $$\begin{aligned} \Vert \mathbf {v}\Vert _{W^{1,p}(\Omega ,\mathbb {R}^n)}\le C(\Omega , p)\Vert f\Vert _{L^p(\Omega )};\qquad (DE_p) \end{aligned}$$
     
  5. (iii’)
    for all \(p\in (1,\infty )\), \((DE_p)\) holds on \(\Omega \).
     
For domains satisfying the separation property, in particular, for finitely connected domains in the plane, our result provides a geometric characterization of the Korn inequality, and gives positive answers to a question raised by Costabel and Dauge (Arch Ration Mech Anal 217(3):873–898, 2015) and a question raised by Russ (Vietnam J Math 41:369–381, 2013). For the plane, our result is best possible in the sense that, there exist infinitely connected domains which are not John but support Korn’s inequality.
  相似文献   

8.
Let \(\Omega \) be a bounded domain with smooth boundary in an n-dimensional metric measure space \((\mathbb {R}^n, \langle ,\rangle , e^{-\phi }dv)\) and let \(\mathbf {u}=(u^1, \ldots , u^n)\) be a vector-valued function from \(\Omega \) to \(\mathbb {R}^n\). In this paper, we investigate the Dirichlet eigenvalue problem of a system of equations of the drifting Laplacian: \(\mathbb {L}_{\phi } \mathbf {u} + \alpha [ \nabla (\mathrm {div}\mathbf { u}) -\nabla \phi \mathrm {div} \mathbf {u}]= - \widetilde{\sigma } \mathbf {u}\), in \( \Omega \), and \(u|_{\partial \Omega }=0,\) where \(\mathbb {L}_{\phi } = \Delta - \nabla \phi \cdot \nabla \) is the drifting Laplacian and \(\alpha \) is a nonnegative constant. We establish some universal inequalities for lower order eigenvalues of this problem on the metric measure space \((\mathbb {R}^n, \langle ,\rangle , e^{-\phi }dv)\) and the Gaussian shrinking soliton \((\mathbb {R}^n, \langle ,\rangle _{\mathrm {can}}, e^{-\frac{|x|^2}{4}}dv, \frac{1}{2})\). Moreover, we give an estimate for the upper bound of the second eigenvalue of this problem in terms of its first eigenvalue on the gradient product Ricci soliton \((\Sigma \times \mathbb {R}, \langle ,\rangle , e^{-\frac{\kappa t^2}{2}}dv, \kappa )\), where \( \Sigma \) is an Einstein manifold with constant Ricci curvature \(\kappa \).  相似文献   

9.
Let \(\mathbf {X}=(X_{jk})_{j,k=1}^n\) denote a Hermitian random matrix with entries \(X_{jk}\), which are independent for \(1\le j\le k\le n\). We consider the rate of convergence of the empirical spectral distribution function of the matrix \(\mathbf {X}\) to the semi-circular law assuming that \(\mathbf{E}X_{jk}=0\), \(\mathbf{E}X_{jk}^2=1\) and that
$$\begin{aligned} \sup _{n\ge 1}\sup _{1\le j,k\le n}\mathbf{E}|X_{jk}|^4=:\mu _4<\infty , \end{aligned}$$
and
$$\begin{aligned} \sup _{1\le j,k\le n}|X_{jk}|\le D_0n^{\frac{1}{4}}. \end{aligned}$$
By means of a recursion argument it is shown that the Kolmogorov distance between the expected spectral distribution of the Wigner matrix \(\mathbf {W}=\frac{1}{\sqrt{n}}\mathbf {X}\) and the semicircular law is of order \(O(n^{-1})\).
  相似文献   

10.
11.
Let \(\Phi _{n}(x)=e^x-\sum _{j=0}^{n-2}\frac{x^j}{j!}\) and \(\alpha _{n} =n\omega _{n-1}^{\frac{1}{n-1}}\) be the sharp constant in Moser’s inequality (where \(\omega _{n-1}\) is the area of the surface of the unit \(n\)-ball in \(\mathbb {R}^n\)), and \(dV\) be the volume element on the \(n\)-dimensional hyperbolic space \((\mathbb {H}^n, g)\) (\(n\ge {2}\)). In this paper, we establish the following sharp Moser–Trudinger type inequalities with the exact growth condition on \(\mathbb {H}^n\):
For any \(u\in {W^{1,n}(\mathbb {H}^n)}\) satisfying \(\Vert \nabla _{g}u\Vert _{n}\le {1}\), there exists a constant \(C(n)>0\) such that
$$\begin{aligned} \int _{\mathbb {H}^n}\frac{\Phi _{n}(\alpha _{n}|u|^{\frac{n}{n-1}})}{(1+|u|)^{\frac{n}{n-1}}}dV \le {C(n)\Vert u\Vert _{L^n}^{n}}. \end{aligned}$$
The power \(\frac{n}{n-1}\) and the constant \(\alpha _{n}\) are optimal in the following senses:
  1. (i)
    If the power \(\frac{n}{n-1}\) in the denominator is replaced by any \(p<\frac{n}{n-1}\), then there exists a sequence of functions \(\{u_{k}\}\) such that \(\Vert \nabla _{g}u_{k}\Vert _{n}\le {1}\), but
    $$\begin{aligned} \frac{1}{\Vert u_{k}\Vert _{L^n}^{n}}\int _{\mathbb {H}^n} \frac{\Phi _{n}(\alpha _{n}(|u_{k}|)^{\frac{n}{n-1}})}{(1+|u_{k}|)^{p}}dV \rightarrow {\infty }. \end{aligned}$$
     
  2. (ii)
    If \(\alpha >\alpha _{n}\), then there exists a sequence of function \(\{u_{k}\}\) such that \(\Vert \nabla _{g}u_{k}\Vert _{n}\le {1}\), but
    $$\begin{aligned} \frac{1}{\Vert u_{k}\Vert _{L^n}^{n}}\int _{\mathbb {H}^n} \frac{\Phi _{n}(\alpha (|u_{k}|)^{\frac{n}{n-1}})}{(1+|u_{k}|)^{p}}dV\rightarrow {\infty }, \end{aligned}$$
    for any \(p\ge {0}\).
     
This result sharpens the earlier work of the authors Lu and Tang (Adv Nonlinear Stud 13(4):1035–1052, 2013) on best constants for the Moser–Trudinger inequalities on hyperbolic spaces.
  相似文献   

12.
It is well known that the pseudovariety \(\mathbf {J}\) of all \(\mathscr {J}\)-trivial monoids is not local, which means that the pseudovariety \(g\mathbf {J}\) of categories generated by \(\mathbf {J}\) is a proper subpseudovariety of the pseudovariety \(\ell \mathbf {J}\) of categories all of whose local monoids belong to \(\mathbf {J}\). In this paper, it is proved that the pseudovariety \(\mathbf {J}\) enjoys the following weaker property. For every prime number p, the pseudovariety \(\ell \mathbf {J}\) is a subpseudovariety of the pseudovariety \(g(\mathbf {J}*\mathbf {Ab}_p)\), where \(\mathbf {Ab}_p\) is the pseudovariety of all elementary abelian p-groups and \(\mathbf {J}*\mathbf {Ab}_p\) is the pseudovariety of monoids generated by the class of all semidirect products of monoids from \(\mathbf {J}\) by groups from \(\mathbf {Ab}_p\). As an application, a new proof of the celebrated equality of pseudovarieties \(\mathbf {PG}=\mathbf {BG}\) is obtained, where \(\mathbf {PG}\) is the pseudovariety of monoids generated by the class of all power monoids of groups and \(\mathbf {BG}\) is the pseudovariety of all block groups.  相似文献   

13.
Let \(\mathcal {U}=\{U(t,s)\}_{t\ge s\ge 0}\) be a strongly continuous and exponentially bounded evolution family acting on a complex Banach space X and let \(\mathcal {X}\) be a certain Banach function space of X-valued functions. We prove that the growth bound of the family \(\mathcal {U}\) is less than or equal to \(-\frac{1}{c(\mathcal {U}, \mathcal {X})}\) provided that the convolution operator \(f\mapsto \mathcal {U}*f\) acts on \(\mathcal {X}.\) It is well known that under the latter assumption, the convolution operator is bounded and then \(c(\mathcal {U}, \mathcal {X})\) denotes (ad-hoc) its norm in \(\mathcal {L}(\mathcal {X}).\) As a consequence, we prove that if \(\sup \nolimits _{s\ge 0}\int \nolimits _{s}^\infty \Vert U(t,s)\Vert dt=u_1(\mathcal {U})<\infty ,\) then \(\omega _0(\mathcal {U})u_1(\mathcal {U})\le -1.\) Finally, we give an example showing that the accuracy of the estimates may be quite accurate.  相似文献   

14.
Let \(\Omega \) be a smooth bounded domain in \(\mathbb R^n\) with \(n\ge 2\), \(W^{1,n}_0(\Omega )\) be the usual Sobolev space on \(\Omega \) and define \(\lambda _1(\Omega ) = \inf \nolimits _{u\in W^{1,n}_0(\Omega )\setminus \{0\}}\frac{\int _\Omega |\nabla u|^n \mathrm{d}x}{\int _\Omega |u|^n \mathrm{d}x}\). Based on the blow-up analysis method, we shall establish the following improved Moser–Trudinger inequality of Tintarev type
$$\begin{aligned} \sup _{u\in W^{1,n}_0(\Omega ), \int _\Omega |\nabla u|^n \mathrm{{d}}x-\alpha \int _\Omega |u|^n \mathrm{{d}}x \le 1} \int _\Omega \exp (\alpha _{n} |u|^{\frac{n}{n-1}}) \mathrm{{d}}x < \infty , \end{aligned}$$
for any \(0 \le \alpha < \lambda _1(\Omega )\), where \(\alpha _{n} = n \omega _{n-1}^{\frac{1}{n-1}}\) with \(\omega _{n-1}\) being the surface area of the unit sphere in \(\mathbb R^n\). This inequality is stronger than the improved Moser–Trudinger inequality obtained by Adimurthi and Druet (Differ Equ 29:295–322, 2004) in dimension 2 and by Yang (J Funct Anal 239:100–126, 2006) in higher dimension and extends a result of Tintarev (J Funct Anal 266:55–66, 2014) in dimension 2 to higher dimension. We also prove that the supremum above is attained for any \(0< \alpha < \lambda _{1}(\Omega )\). (The case \(\alpha =0\) corresponding to the Moser–Trudinger inequality is well known.)
  相似文献   

15.
16.
In this paper, the large time decay of the magneto-micropolar fluid equations on \(\mathbb {R}^n\) (\( n=2,3\)) is studied. We show, for Leray global solutions, that \( \Vert ({\varvec{u}},{\varvec{w}},{\varvec{b}})(\cdot ,t) \Vert _{{L^2(\mathbb {R}^n)}} \rightarrow 0 \) as \(t \rightarrow \infty \) with arbitrary initial data in \( L^2(\mathbb {R}^n)\). When the vortex viscosity is present, we obtain a (faster) decay for the micro-rotational field: \( \Vert {\varvec{w}}(\cdot ,t) \Vert _{{L^2(\mathbb {R}^n)}} = o(t^{-1/2})\). Some related results are also included.  相似文献   

17.
For two independent groups, let \(M_j(\mathbf {X})\) be some conditional measure of location for the jth group associated with some random variable Y given \(\mathbf {X}=(X_1, X_2)\). Let \(\Omega =\{\mathbf {X}_1, \ldots , \mathbf {X}_K\}\) be a set of K points to be determined. An extant technique can be used to test \(H_0\): \(M_1(\mathbf {X})=M_2(\mathbf {X})\) for each \(\mathbf {X} \in \Omega \) without making any parametric assumption about \(M_j(\mathbf {X})\). But there are two general reasons to suspect that the method can have relatively low power. The paper reports simulation results on an alternative approach that is designed to test the global hypothesis \(H_0\): \(M_1(\mathbf {X})=M_2(\mathbf {X})\) for all \(\mathbf {X} \in \Omega \). The main result is that the new method offers a distinct power advantage. Using data from the Well Elderly 2 study, it is illustrated that the alternative method can make a practical difference in terms of detecting a difference between two groups.  相似文献   

18.
Let \(n\ge 2\) and \(g_{\lambda }^{*}\) be the well-known high-dimensional Littlewood–Paley function which was defined and studied by E. M. Stein,
$$\begin{aligned} g_{\lambda }^{*}(f)(x) =\bigg (\iint _{\mathbb {R}^{n+1}_{+}} \Big (\frac{t}{t+|x-y|}\Big )^{n\lambda } |\nabla P_tf(y,t)|^2 \frac{\mathrm{d}y \mathrm{d}t}{t^{n-1}}\bigg )^{1/2}, \ \quad \lambda > 1, \end{aligned}$$
where \(P_tf(y,t)=p_t*f(y)\), \(p_t(y)=t^{-n}p(y/t)\), and \(p(x) = (1+|x|^2)^{-(n+1)/2}\), \(\nabla =(\frac{\partial }{\partial y_1},\ldots ,\frac{\partial }{\partial y_n},\frac{\partial }{\partial t})\). In this paper, we give a characterization of two-weight norm inequality for \(g_{\lambda }^{*}\)-function. We show that \(\big \Vert g_{\lambda }^{*}(f \sigma ) \big \Vert _{L^2(w)} \lesssim \big \Vert f \big \Vert _{L^2(\sigma )}\) if and only if the two-weight Muckenhoupt \(A_2\) condition holds, and a testing condition holds:
$$\begin{aligned} \sup _{Q : \text {cubes}~\mathrm{in} \ {\mathbb {R}^n}} \frac{1}{\sigma (Q)} \int _{{\mathbb {R}^n}} \iint _{\widehat{Q}} \Big (\frac{t}{t+|x-y|}\Big )^{n\lambda }|\nabla P_t(\mathbf {1}_Q \sigma )(y,t)|^2 \frac{w \mathrm{d}x \mathrm{d}t}{t^{n-1}} \mathrm{d}y < \infty , \end{aligned}$$
where \(\widehat{Q}\) is the Carleson box over Q and \((w, \sigma )\) is a pair of weights. We actually prove this characterization for \(g_{\lambda }^{*}\)-function associated with more general fractional Poisson kernel \(p^\alpha (x) = (1+|x|^2)^{-{(n+\alpha )}/{2}}\). Moreover, the corresponding results for intrinsic \(g_{\lambda }^*\)-function are also presented.
  相似文献   

19.
Let \(\Omega \subset \mathbb {R}^\nu \), \(\nu \ge 2\), be a \(C^{1,1}\) domain whose boundary \(\partial \Omega \) is either compact or behaves suitably at infinity. For \(p\in (1,\infty )\) and \(\alpha >0\), define
$$\begin{aligned} \Lambda (\Omega ,p,\alpha ):=\inf _{\begin{array}{c} u\in W^{1,p}(\Omega )\\ u\not \equiv 0 \end{array}}\dfrac{\displaystyle \int _\Omega |\nabla u|^p \mathrm {d} x - \alpha \displaystyle \int _{\partial \Omega } |u|^p\mathrm {d}\sigma }{\displaystyle \int _\Omega |u|^p\mathrm {d} x}, \end{aligned}$$
where \(\mathrm {d}\sigma \) is the surface measure on \(\partial \Omega \). We show the asymptotics
$$\begin{aligned} \Lambda (\Omega ,p,\alpha )=-(p-1)\alpha ^{\frac{p}{p-1}} - (\nu -1)H_\mathrm {max}\, \alpha + o(\alpha ), \quad \alpha \rightarrow +\infty , \end{aligned}$$
where \(H_\mathrm {max}\) is the maximum mean curvature of \(\partial \Omega \). The asymptotic behavior of the associated minimizers is discussed as well. The estimate is then applied to the study of the best constant in a boundary trace theorem for expanding domains, to the norm estimate for extension operators and to related isoperimetric inequalities.
  相似文献   

20.
We study the transition density of a standard two-dimensional Brownian motion killed when hitting a bounded Borel set A. We derive the asymptotic form of the density, say \(p^A_t(\mathbf{x},\mathbf{y})\), for large times t and for \(\mathbf{x}\) and \(\mathbf{y}\) in the exterior of A valid uniformly under the constraint \(|\mathbf{x}|\vee |\mathbf{y}| =O(t)\). Within the parabolic regime \(|\mathbf{x}|\vee |\mathbf{y}| = O(\sqrt{t})\) in particular \(p^A_t(\mathbf{x},\mathbf{y})\) is shown to behave like \(4e_A(\mathbf{x})e_A(\mathbf{y}) (\lg t)^{-2} p_t(\mathbf{y}-\mathbf{x})\) for large t, where \(p_t(\mathbf{y}-\mathbf{x})\) is the transition kernel of the Brownian motion (without killing) and \(e_A\) is the Green function for the ‘exterior of A’ with a pole at infinity normalized so that \(e_A(\mathbf{x}) \sim \lg |\mathbf{x}|\). We also provide fairly accurate upper and lower bounds of \(p^A_t(\mathbf{x},\mathbf{y})\) for the case \(|\mathbf{x}|\vee |\mathbf{y}|>t\) as well as corresponding results for the higher dimensions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号