首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
The complex Pd(μ-OOCMe)4Cu(OH2) · 2Pd3(μ-OOCMe)6 was synthesized and characterized by X-ray crystallography. In the heterometallic moiety of this complex, the PdII and CuII atoms are at an extraordinary short distance (2.521(3) Å). DFT quantum-chemical calculations of the geometric and electronic structure of a series of heterobinuclear paddlewheel complexes PdIIMII(μ-OOCMe)4L (M = ZnII, NiII, CuII, CoII, FeII; L = OH2 and NCH) and their formate analogues PdIIMII(μ-OOCH)4L (M = ZnII, NiII, FeII) showed that the extraordinary short Pd?M distance in all these complexes is caused only by the tightening effect of carboxylate bridges rather than by the metal-metal bond. The direct Pd-M interaction becomes possible only after removal of electrons from the antibonding orbitals and formation of oxidized complexes of the [PdIII(μ-OOCMe)4NiIII]2+ type.  相似文献   

2.
Summary The synthesis and properties of cationic complexes of general formula [ML2{CH2(Ph2PE)2}]BF4, where M = PdII and RhII, L2 = 3-MeC3H4, {P(O)(OR)2}2H (R = Me, Et), COD, (CO)2, (CO)PPh3 and E = S, Se are described. The methylene proton of the coordinated phosphine sulphide or selenide ligands react with strong bases as BuLi in n-hexane or NaH in THF, to give neutral complexes of the type [ML2{CH(Ph2PE)2}], where M = PdII, RhI; L2 = 3-MeC3H4, COD and E = S, Se. The complexes have been characterized by elemental analyses, molar conductivities, i.r., 1H n.m.r. and 31P{1H} n.m.r. spectroscopy.  相似文献   

3.
Summary New complexes of the general formulae [MLA(H2O)2]-Cl2 (M=Ni or Cu), [MLAX2] (M=Co or Cu; X=Cl or Br), [NiLABr2]·H2O, [MLA] [MCl4] (M=Pd or Pt), [NiLB(H2O)2]Cl2·2H2O, [MLBCl2] (M=Co, Ni, Cu, Pd or Pt; X=Cl or Br) and [MLB] [MCl4] (M=Pd or Pt), where LA=N,N-ethylenebis(2-acetylpyridine imine) and LB=N, N-ethylenebis(2-benzoylpyridine imine), have been isolated. The complexes were characterized by elemental analyses, conductivity measurements, t.g./d.t.g. methods, magnetic susceptibilities and spectroscopic (i.r., far-i.r., ligand field,1Hn.m.r.) studies. Monomeric pseudo-octahedral stereochemistries for the CoII, NiII and CuII complexes andcis square planar structures for the compounds [MLBX2] (M=Pd or Pt; X=Cl or Br) are assigned in the solid state. The molecules LA and LB behave as tetradentate chelate ligands in the CoII, NiII, CuII and Magnus-type PdII and PtII complexes, bonding through both the pyridine and methine nitrogen atoms. A bidentateN-methine coordination of the Schiff base LB is assigned in the [MLBX2] complexes (M=Pd or Pt; X=Cl or Br). The anomalous magnetic moment values of the CoII complexes are discussed.  相似文献   

4.
The scaffold geometries, stability and magnetic features of the (pyridine‐2‐yl)methanolate (L) supported wheel‐shaped transition‐metal complexes with compositions [M6L12] ( 1 ), [Na?(ML2)6]+ ( 2 ), and [M′?(ML2)6]2+ ( 3 ), in which M=CoII, NiII, CuII, and ZnII were investigated with density functional theory (DFT). The goals of this study are manifold: 1) To advance understanding of the magnetism in the synthesized compounds [Na?(ML2)6]+ and [M′?(ML2)6]2+ that were described in Angew. Chem. Int. Ed.­ 2010 , 49, 4443 ( I ‐{Na?Ni6}, I ‐{Ni′?Ni6}) and Dalton Trans.­ 2011 , 40, 10526 ( II ‐{Na?Co6}, II ‐{Co′?Co6}); 2) To disclose how the structural, electronic, and magnetic characteristics of 1 , 2 , and 3 change upon varying MII from d7 (Co2+) to d10 (Zn2+); 3) To estimate the influence of the Na+ and M′2+ ions (XQ+) occupying the central voids of 2 and 3 on the external and internal magnetic coupling interactions in these spin structures; 4) To assess the relative structural and electrochemical stabilities of 1 , 2 , and 3 . In particular, we focus here on the net spin polarization, the determination of the strength and the sign of the exchange coupling energies, the rationalization of the nature of the magnetic coupling, and the ground‐state structures of 1 , 2 , and 3 . Our study combines the broken symmetry DFT approach and the model Hamiltonian methodology implemented in the computational framework CONDON 2.0 for the modeling of molecular spin structures, to interpret magnetic susceptibility measurements of I ‐{Na?Ni6} and I ‐{Ni′?Ni6}. We illustrate that whereas the structures, stability and magnetism of 1 , 2 , and 3 are indeed influenced by the nature of 3d transition‐metals in the {M6} rims, the XQ+ ions in the inner cavities of 2 and 3 impact these properties to an even larger degree. As exemplified by I ‐{Ni′?Ni6}, such heptanuclear complexes exhibit ground‐state multiplets that cannot be described by simplistic model of spin‐up and spin‐down metal centers. Furthermore, we assess how future low‐temperature susceptibility measurements at high magnetic fields can augment the investigation of compound 3 with M=Co, Ni.  相似文献   

5.
Summary Stability constants of binary (ML, ML2) and ternary (MAL) complexes, where M=CoII, NiII, CuII and ZnII; A-iminodiacetic acid (ida),N-methyliminodiacetic acid (Me-ida), anthranilatediacetic acid (ada), nitrilotriacetic acid (nta); LH2=salicylaldoxime have been determined at 25° C at 0.1M KNO3 ionic strength by the Irving-Rossotti technique. K MAL MA is always lower than K ML M and KMI 2 ML . In the ternary systems studied, the K MAL ML values lie in the sequence: K M(ida)L M(ida) >K M(Me-ida)L M(Me-ida) >K M(nta)L M(nta) >K M(ada)L M(ada) . For CuII, the K Cu(nta)L Cu(nta) and K Cu(ada)L Cu(ada) values are significantly reduced compared to all other primary ligands. For different primary ligands, the K MAL MA sequence is reversed compared to K MA M , but for A=ada and nta their relative positions remain unaltered in both binary and ternary systems. The results have been explained in the light of different astatistical factors such as electrostatic effects, steric hindrance, change of electronegativity of the central metal and stereochemical factors.  相似文献   

6.
Summary The formation constants of 1-phenyl-3-thiazole-2-ylthiourea complexes with some bivalent metal ions (CuII, NiII, ZnII and MnII) have been determined in 75% EtOH–H2O. Complexes of CuII, NiII, ZnII, HgII and PdII have been isolated and characterized by conductance, i.r., electronic spectra and magnetic measurements. The ligand forms ML complexes with CuII and HgII and ML2 with NiII, ZnII and PdII, where L is the uninegatively charged bidentate ligand and binds through the ring nitrogen and thiocarbonyl sulphur atoms.  相似文献   

7.
Reaction of [Pt(DMSO)2Cl2] or [Pd(MeCN)2Cl2] with the electron-rich LH=N,N’-bis(4-dimethylaminophenyl)ethanimidamide yielded mononuclear [PtL2] ( 1 ) but dinuclear [Pd2L4] ( 2 ), a paddle-wheel complex. The neutral compounds were characterized through experiments (crystal structures, electrochemistry, UV-vis-NIR spectroscopy, magnetic resonance) and TD-DFT calculations as metal(II) species with noninnocent ligands L. The reversibly accessible cations [PtL2]+ and [Pd2L4]+ were also studied, the latter as [Pd2L4][B{3,5-(CF3)2C6H3}4] single crystals. Experimental and computational investigations were directed at the elucidation of the electronic structures, establishing the correct oxidation states within the alternatives [PtII(L)2] or [Pt.(L )2], [PtII(L0.5−)2]+ or [PtIII(L)2]+, [(PdII)2(μ-L)4] or [(Pd1.5)2(μ-L0.75−)4], and [(Pd2.5)2(μ-L)4]+ or [(PdII)2(μ-L0.75−)4]+. In each case, the first alternative was shown to be most appropriate. Remarkable results include the preference of platinum for mononuclear planar [PtL2] with an N-Pt-N bite angle of 62.8(2)° in contrast to [Pd2L4], and the dimetal (Pd24+→Pd25+) instead of ligand (L→L ) oxidation of the dinuclear palladium compound.  相似文献   

8.
Summary The single-step electrochemical synthesis of neutral transition metal complexes of imidazole, pyrazole and their derivatives has been achieved at ambient temperature. The metal was oxidized in an Me2CO solution of the diazole to yield complexes of the general formula: [M(Iz)2] (where M = Co, Ni, Cu, Zn; Iz = imidazolate); [M(MeIz)2] (where M = Co, Ni, Cu, Zn; MeIz = 4-methylimidazolate); [M(PriIz)2] (where M = Co, Ni, Cu, Zn; PriIz = 2-isopropylimidazolate); [M(pyIz)n] (where M = CoIII, CuII, ZnII; pyIz = 2-(2-pyridyl)imidazolate); [M(Pz)n] (where M = CoIII, NiII, CuII, ZnII; Pz = pyrazolate); [M(ClPz)n] and [M(IPz)n] (where M = CoIII, NiII, CuII, ZnII; ClPz = 4-chloropyrazolate; IPz = 4-iodopyrazolate); [M(Me2Pz)n] (where M = CoII, CuI, ZnII; Me2Pz = 3,5-dimethylpyrazolate) and [M(BrMe2Pz)n] (where M = CoII, NiII, CuI, ZnII; BrMe2Pz = 3,5-dimethyl-4-bromopyrazolate). Vibrational spectra verified the presence of the anionic diazole and electronic spectra confirmed the stereochemistry about the metal centre. Variable temperature (360-90 K) magnetic measurements of the cobalt and copper chelates revealed strong antiferromagnetic interaction between the metal ions in the lattice. Data for the copper complexes were fitted to a Heisenberg (S= ) model for an infinite one-dimensional linear chain, yielding best fit values of J=–62––65cm–1 andg = 2.02–2.18. Data for the cobalt complexes were fitted to an Ising (S= ) model with J=–4.62––11.7cm–1 andg = 2.06–2.49.  相似文献   

9.
New framework materials composed of well-defined vanadium oxide clusters were prepared by low-temperature reactions and characterized by X-ray crystal structure analysis. The structures of these solids contain {V18O42} cages linked into two interpenetrating three-dimensional networks by bridging {M(H2O)4} groups (M=FeII, CoII; see picture).  相似文献   

10.
The tripodal tetraamine ligand N{(CH2)3NH2}{(CH2)2NH2}2 (pee), has been investigated as an asymmetrical tetraamine chelating agent for CoII, NiII, CuII, ZnII and CdII. The protonation constants for this ligand and the formation constants for its complexes have been determined potentiometrically in 0.1 M KCl at 25 °C. The successive protonation constants (log K n ) are: 10.22, 9.51, 8.78 and 1.60 (n = 1–4). One complex with formula M(pee)2+ (M = Co, Ni, Cu, Zn and Cd) is common to all five metal ions and the formation constant (log ML) is: 12.15, 14.17, 16.55, 13.35 or 9.74, respectively. In addition to the simple complexes, CoII, CuII and ZnII also give hydroxo complexes, and CuII and NiII give complexes with monoprotonated pee. [Zn(pee)](ClO4)2 and [Cd(pee)Cl](ClO4) complexes were isolated and are believed to have tetrahedral and trigonal-bipyramidal structures, respectively.  相似文献   

11.
Summary FeIII, CoII, NiII and CuII complexes of a new Schiff base, 2-phenyl-1,2,3-triazole-4-carboxalidene-2-aminophenol (PTCAP), have been synthesized and characterized by elemental analyses, molar conductance and magnetic susceptibility measurements, and by u.v.-vis., i.r. and e.p.r. spectral observations. The studies indicate an octahedral structure for the complexes with the general formula [ML2] (M = CoII, NiII or CuII.; L = PTCAP) or [M′(OH)L2] (M′ = FeIII). The i.r. spectra suggest that the ligand acts as a tridentate (NNO) donor towards CoII, NiII and CuII, and, in the FeIII complex, one of the two ligand molecules acts as a bidentate (NO) donor and the other as a tridentate donor. The M?ssbauer spectrum of the FeIII complex suggests the presence of a spin equilibrium at room temperature. Cyclic voltammograms are also recorded for the CuII and FeIII complexes.  相似文献   

12.
A new series of 14–16-membered hexaazamacrocyclic complexes [ML1X2] and [ML2X2] (M = CoII, NiII, CuII and ZnII; X = Cl or NO3) have been synthesized by template condensation of phenylenediamine, primary diamines and formaldehyde solution 35% in MeOH and have been characterized by i.r., 1H-n.m.r., e.p.r., and u.v. spectroscopy as well as by magnetic susceptibility and conductivity measurements. An octahedral geometry has been suggested for all the complexes.  相似文献   

13.
A novel heterometallic diPdII–diCuII grid‐chain, {[(bpy)4Pd4Cu2L4](NO3)4}n ( 2 ; bpy=2,2′‐bipyridine), was synthesized through a programmable self‐assembly approach from the molecular corners [(bpy)2Pd2(HL)(L)](NO3) ( 1 ) as linkers with CuII nitrate by using the bifunctional H2L ligand featuring primary (pyrazole) and secondary (benzoic acid) groups. Structural analysis revealed that 1D structure 2 consists of one [Cu2(O2CPh)4]n unit as a bridge and two [(bpy)2Pd2L2]n corners. Additionally, the catalytic effect of the heterometallic synergy on the Suzuki coupling reaction by using 2 was further explored.  相似文献   

14.
A new class of 16- and 17-membered tetraamide macrocyclic complexes, [ML1X2] and [ML2X2] [M = MnII, CoII, NiII, CuII or ZnII; X = NO3 or Cl], have been prepared by the template reaction of anthranilic acid, 1,2-diaminoethane or 1,3-diaminopropane and succinic acid in 2:1:1 molar ratio. The stoichiometries and coordination modes of the complexes have been deduced from physicochemical and spectroscopic measurements. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

15.
Summary A new series of 15- and 16-membered dioxotetraamine macrocyclic complexes, [ML1X2] and [ML2X2] (M = MnII, CoII, NiII, CuII or ZnII; X = Cl or NO3), respectively, were prepared by reacting o-aminobenzoic acid, diaminoethane or 1,3-diaminopropane with 2,4-pentanedione in the presence of metal ions. The complexes were identified by analytical data, i.r., 1H-n.m.r., e.p.r. and u.v.-vis. spectroscopies, and by conductivity and magnetic moment measurements. They exhibit an octahedral geometry leaving the peptide oxygen uncoordinated. They are air stable and insoluble in water and most organic solvents, but soluble in DMSO and DMF. The low conductivity suggests that the complexes are non-ionic.  相似文献   

16.
Methods of synthesis have been developed for new types of promising precursors of metal borides, coordination compounds [ML3]B{3H8{2 (M = Fe2+, Ni2+; L = bipy, phen), using modified procedures of synthesis of octahydrotriborate anion. Compounds [Ni(bipy)3]B{3H8}2, [Ni (phen)3]B{3H8}2 and [Fe(phen)3]B{3H8}2 were prepared and characterized by single-crystal X-ray diffraction.  相似文献   

17.
Synthesis and Spectroscopic Characterization of Copper(II) and Nickel(II) Tricyanomethanide Complexes with Imidazoles – Crystal Structure of [Cu{C(CN)3}2(2-meiz)2] The copper(II) and nickel(II) tricyanomethanide complexes with imidazoles of the type [Cu{C(CN)3}2L4], [L = 2- or 4-methylimidazole (meiz)] and [M{C(CN)3}2L2] [M = Cu, L = imidazole (iz), 2- or 4-meiz; M = Ni, L = iz, 2- or 4-meiz] were prepared and characterized by electronic, infrared, and – some of them – by ESR spectroscopy. The structure [Cu{C(CN)3}2(2-meiz)2], solved by X-ray crystallographic analysis, shows a two-dimensional network with unsymmetric C(CN)3-bridges between the CuII atoms. Polymeric structures with bridging C(CN)3-groups were identified by means of spectroscopic methods also for the other [M{C(CN)3}2L2] complexes. On the other hand, for the complexes [M{C(CN)3}2L4] follow molecular structures, in which monodentate C(CN)3 ligands are present. All compounds under investigation show a tetragonal-bipyramidal geometry with various degree of tetragonal distortion.  相似文献   

18.
Summary The title complexes [ML2]n+=CoIII, CuII, NiII; L=1-thia-4,7-diazacyclononane-S-oxide) have been prepared and characterized spectroscopically. The sulphoxide group is coordinated through the oxygen atom and the complexes have atrans-O,O geometry. The nickel(II) complex of bis(2-amino-ethyl)sulphoxide has also been studied.  相似文献   

19.
Different-metal different-ligand complexes [{Co(Phen)3}2{Co(Phen)(H2O)4}2][{Ge(μ-OH)(μ- Hedp)}6Cl2] (I), [{Cu(Phen)2(H2O)}2(HPhen)2][Ge(μ-OH)(μ-Hedp)]6 · 20H2O (II) (H4Hedp = 1-hydroxyethylidenediphosphonic acid, Phen = 1,10-phenanthroline) were synthesized and studied by X-ray diffraction. According to X-ray diffraction data (CIF files CCDC nos. 1573112 (I), 1573113 (II)), compounds I and II are cation–anion type complexes in which the anions are represented by {[Ge(μ-OH)(μ-Hedp)]6}6– and, in the case of I, two additional Cl ions, while the cations are [Co(Phen)3]2+, [Co(Phen)(H2O)4]2+ in I and [Cu(Phen)2(H2O)]2+, HPhen+ in II. In the crystals of compounds I and II, the cations, anions, and water molecules are combined by numerous intermolecular hydrogen bonds, giving rise to a 3D network.  相似文献   

20.
Summary Stability constants of binary (ML, ML2) and ternary (MAL) complexes [M=CoII, NiII, CuII or ZnII; A=iminodiacetic acid (ida),N-methyliminodiacetic acid (Me-ida), anthranilatediacetic acid (ada), nitrilotriacetic acid (nta), 2,2-bipyridine (bipy), orthophenanthroline (o-phen); HL =acetohydroxamic acid] have been determined at 25°C at an ionic strength of 0.1M KNO3 by the Iriving Rossotti technique. In the case of aminopolycarboxylic acids as primary ligands, there is always a lowering of K MAL MA from K ML M and K 2 ML while in the case of heteroaromaticN-bases as primary ligands, the values of K MAL MA are very close to those of K ML M . In the ternary systems studied, the values of K MAL MA are in the sequence, K M(o-phen) M(o-phen) >K M(bipy)L M(bipy) K M(ida)L M(ida) >K M(Me-ida)L M(Me-ida) >K M(nta)L M(nta) >K M(ada)L M(ada) , while in the case of CuII, the values of M M(nta)L M(nta) and K M(ada)L M(ada) are drastically reduced compared to all other primary ligands. For aminopolycarboxylic acids, the sequence of K MAL MA is opposite to those of K MA M and K MAL M though in the sequence of K MA M , K MAL M and K MAL MA for A=ada and nta their relative positions are unaltered. The obtained results are explained in the light of different astatistical factors such as electrostatic effects, steric hindrance, change of effective positive charge on the central metal depending upon the -basic and -acidic character of the primary ligands.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号