首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 24 毫秒
1.
This paper studies the almost sure location of the eigenvalues of matrices \({\mathbf{W}}_N {\mathbf{W}}_N^{*}\), where \({\mathbf{W}}_N = ({\mathbf{W}}_N^{(1)T}, \ldots , {\mathbf{W}}_N^{(M)T})^{T}\) is a \({\textit{ML}} \times N\) block-line matrix whose block-lines \(({\mathbf{W}}_N^{(m)})_{m=1, \ldots , M}\) are independent identically distributed \(L \times N\) Hankel matrices built from i.i.d. standard complex Gaussian sequences. It is shown that if \(M \rightarrow +\infty \) and \(\frac{{\textit{ML}}}{N} \rightarrow c_* (c_* \in (0, \infty ))\), then the empirical eigenvalue distribution of \({\mathbf{W}}_N {\mathbf{W}}_N^{*}\) converges almost surely towards the Marcenko–Pastur distribution. More importantly, it is established using the Haagerup–Schultz–Thorbjornsen ideas that if \(L = O(N^{\alpha })\) with \(\alpha < 2/3\), then, almost surely, for \(N\) large enough, the eigenvalues of \({\mathbf{W}}_N {\mathbf{W}}_N^{*}\) are located in the neighbourhood of the Marcenko–Pastur distribution. It is conjectured that the condition \(\alpha < 2/3\) is optimal.  相似文献   

2.
For \(k,m,n\in {\mathbb {N}}\), we consider \(n^k\times n^k\) random matrices of the form
$$\begin{aligned} {\mathcal {M}}_{n,m,k}({\mathbf {y}})=\sum _{\alpha =1}^m\tau _\alpha {Y_\alpha }Y_\alpha ^T,\quad {Y}_\alpha ={\mathbf {y}}_\alpha ^{(1)}\otimes \cdots \otimes {\mathbf {y}}_\alpha ^{(k)}, \end{aligned}$$
where \(\tau _{\alpha }\), \(\alpha \in [m]\), are real numbers and \({\mathbf {y}}_\alpha ^{(j)}\), \(\alpha \in [m]\), \(j\in [k]\), are i.i.d. copies of a normalized isotropic random vector \({\mathbf {y}}\in {\mathbb {R}}^n\). For every fixed \(k\ge 1\), if the Normalized Counting Measures of \(\{\tau _{\alpha }\}_{\alpha }\) converge weakly as \(m,n\rightarrow \infty \), \(m/n^k\rightarrow c\in [0,\infty )\) and \({\mathbf {y}}\) is a good vector in the sense of Definition 1.1, then the Normalized Counting Measures of eigenvalues of \({\mathcal {M}}_{n,m,k}({\mathbf {y}})\) converge weakly in probability to a nonrandom limit found in Marchenko and Pastur (Math USSR Sb 1:457–483, 1967). For \(k=2\), we define a subclass of good vectors \({\mathbf {y}}\) for which the centered linear eigenvalue statistics \(n^{-1/2}{{\mathrm{Tr}}}\varphi ({\mathcal {M}}_{n,m,2}({\mathbf {y}}))^\circ \) converge in distribution to a Gaussian random variable, i.e., the Central Limit Theorem is valid.
  相似文献   

3.
Let \(\{X(t):t\in \mathbb R_+\}\) be a stationary Gaussian process with almost surely (a.s.) continuous sample paths, \(\mathbb E X(t) = 0, \mathbb E X^2(t) = 1\) and correlation function satisfying (i) \(r(t) = 1 - C|t|^{\alpha } + o(|t|^{\alpha })\) as \(t\rightarrow 0\) for some \(0\le \alpha \le 2\) and \(C>0\); (ii) \(\sup _{t\ge s}|r(t)|<1\) for each \(s>0\) and (iii) \(r(t) = O(t^{-\lambda })\) as \(t\rightarrow \infty \) for some \(\lambda >0\). For any \(n\ge 1\), consider n mutually independent copies of X and denote by \(\{X_{r:n}(t):t\ge 0\}\) the rth smallest order statistics process, \(1\le r\le n\). We provide a tractable criterion for assessing whether, for any positive, non-decreasing function \(f, \mathbb P(\mathscr {E}_f)=\mathbb P(X_{r:n}(t) > f(t)\, \text { i.o.})\) equals 0 or 1. Using this criterion we find, for a family of functions \(f_p(t)\) such that \(z_p(t)=\mathbb P(\sup _{s\in [0,1]}X_{r:n}(s)>f_p(t))=O((t\log ^{1-p} t)^{-1})\), that \(\mathbb P(\mathscr {E}_{f_p})= 1_{\{p\ge 0\}}\). Consequently, with \(\xi _p (t) = \sup \{s:0\le s\le t, X_{r:n}(s)\ge f_p(s)\}\), for \(p\ge 0\) we have \(\lim _{t\rightarrow \infty }\xi _p(t)=\infty \) and \(\limsup _{t\rightarrow \infty }(\xi _p(t)-t)=0\) a.s. Complementarily, we prove an Erdös–Révész type law of the iterated logarithm lower bound on \(\xi _p(t)\), namely, that \(\liminf _{t\rightarrow \infty }(\xi _p(t)-t)/h_p(t) = -1\) a.s. for \(p>1\) and \(\liminf _{t\rightarrow \infty }\log (\xi _p(t)/t)/(h_p(t)/t) = -1\) a.s. for \(p\in (0,1]\), where \(h_p(t)=(1/z_p(t))p\log \log t\).  相似文献   

4.
For an irrational number \(x\in [0,1)\), let \(x=[a_1(x), a_2(x),\ldots ]\) be its continued fraction expansion. Let \(\psi : \mathbb {N} \rightarrow \mathbb {N}\) be a function with \(\psi (n)/n\rightarrow \infty \) as \(n\rightarrow \infty \). The (upper, lower) fast Khintchine spectrum for \(\psi \) is defined as the Hausdorff dimension of the set of numbers \(x\in (0,1)\) for which the (upper, lower) limit of \(\frac{1}{\psi (n)}\sum _{j=1}^n\log a_j(x)\) is equal to 1. The fast Khintchine spectrum was determined by Fan, Liao, Wang, and Wu. We calculate the upper and lower fast Khintchine spectra. These three spectra can be different.  相似文献   

5.
Let \(\mathbf {X}=(X_{jk})_{j,k=1}^n\) denote a Hermitian random matrix with entries \(X_{jk}\), which are independent for \(1\le j\le k\le n\). We consider the rate of convergence of the empirical spectral distribution function of the matrix \(\mathbf {X}\) to the semi-circular law assuming that \(\mathbf{E}X_{jk}=0\), \(\mathbf{E}X_{jk}^2=1\) and that
$$\begin{aligned} \sup _{n\ge 1}\sup _{1\le j,k\le n}\mathbf{E}|X_{jk}|^4=:\mu _4<\infty , \end{aligned}$$
and
$$\begin{aligned} \sup _{1\le j,k\le n}|X_{jk}|\le D_0n^{\frac{1}{4}}. \end{aligned}$$
By means of a recursion argument it is shown that the Kolmogorov distance between the expected spectral distribution of the Wigner matrix \(\mathbf {W}=\frac{1}{\sqrt{n}}\mathbf {X}\) and the semicircular law is of order \(O(n^{-1})\).
  相似文献   

6.
In most classical holomorphic function spaces on the unit disk in which the polynomials are dense, a function f can be approximated in norm by its dilates \(f_r(z):=f(rz)~(r<1)\). We show that this is not the case for the de Branges–Rovnyak spaces \(\mathcal{H}(b)\). More precisely, we exhibit a space \(\mathcal{H}(b)\) in which the polynomials are dense and a function \(f\in \mathcal{H}(b)\) such that \(\lim _{r\rightarrow 1^-}\Vert f_r\Vert _{\mathcal{H}(b)}=\infty \). On the positive side, we prove the following approximation theorem for Toeplitz operators on general de Branges–Rovnyak spaces \(\mathcal{H}(b)\). If \((h_n)\) is a sequence in \(H^\infty \) such that \(\Vert h_n\Vert _{H^\infty }\le 1\) and \(h_n(0)\rightarrow 1\), then \(\Vert T_{\overline{h}_n}f-f\Vert _{\mathcal{H}(b)}\rightarrow 0\) for all \(f\in \mathcal{H}(b)\). Using this result, we give the first constructive proof that, if b is a nonextreme point of the unit ball of \(H^\infty \), then the polynomials are dense in \(\mathcal{H}(b)\).  相似文献   

7.
Let \(\alpha ,\beta \) be orientation-preserving diffeomorphism (shifts) of \(\mathbb {R}_+=(0,\infty )\) onto itself with the only fixed points \(0\) and \(\infty \) and \(U_\alpha ,U_\beta \) be the isometric shift operators on \(L^p(\mathbb {R}_+)\) given by \(U_\alpha f=(\alpha ')^{1/p}(f\circ \alpha )\), \(U_\beta f=(\beta ')^{1/p}(f\circ \beta )\), and \(P_2^\pm =(I\pm S_2)/2\) where
$$\begin{aligned} (S_2 f)(t):=\frac{1}{\pi i}\int \limits _0^\infty \left( \frac{t}{\tau }\right) ^{1/2-1/p}\frac{f(\tau )}{\tau -t}\,d\tau , \quad t\in \mathbb {R}_+, \end{aligned}$$
is the weighted Cauchy singular integral operator. We prove that if \(\alpha ',\beta '\) and \(c,d\) are continuous on \(\mathbb {R}_+\) and slowly oscillating at \(0\) and \(\infty \), and
$$\begin{aligned} \limsup _{t\rightarrow s}|c(t)|<1, \quad \limsup _{t\rightarrow s}|d(t)|<1, \quad s\in \{0,\infty \}, \end{aligned}$$
then the operator \((I-cU_\alpha )P_2^++(I-dU_\beta )P_2^-\) is Fredholm on \(L^p(\mathbb {R}_+)\) and its index is equal to zero. Moreover, its regularizers are described.
  相似文献   

8.
We establish the linear independence of time-frequency translates for functions \(f\) on \(\mathbb {R}^d\) having one-sided decay \(\lim _{x \in H,\ |x|\rightarrow \infty } |f(x)| e^{c|x| \log |x|} = 0\) for all \(c>0\), which do not vanish on an affine half-space \(H \subset \mathbb {R}^d\).  相似文献   

9.
Let \(\Delta = \sum _{m=0}^\infty q^{(2m+1)^2} \in \mathbf {F}_2[[q]]\) be the reduction mod 2 of the \(\Delta \) series. A modular form of level 1, \(f=\sum _{n\geqslant 0} c(n) \,q^n\), with integer coefficients, is congruent modulo \(2\) to a polynomial in \(\Delta \). Let us set \(W_f(x)=\sum _{n\leqslant x,\ c(n)\text { odd }} 1\), the number of odd Fourier coefficients of \(f\) of index \(\leqslant x\). The order of magnitude of \(W_f(x)\) (for \(x\rightarrow \infty \)) has been determined by Serre in the seventies. Here, we give an asymptotic equivalent for \(W_f(x)\). Let \(p(n)\) be the partition function and \(A_0(x)\) (resp. \(A_1(x)\)) be the number of \(n\leqslant x\) such that \(p(n)\) is even (resp. odd). In the preceding papers, the second-named author has shown that \(A_0(x)\geqslant 0.28 \sqrt{x\;\log \log x}\) for \(x\geqslant 3\) and \(A_1(x)>\frac{4.57 \sqrt{x}}{\log x}\) for \(x\geqslant 7\). Here, it is proved that \(A_0(x)\geqslant 0.069 \sqrt{x}\;\log \log x\) holds for \(x>1\) and that \(A_1(x) \geqslant \frac{0.037 \sqrt{x}}{(\log x)^{7/8}}\) holds for \(x\geqslant 2\). The main tools used to prove these results are the determination of the order of nilpotence of a modular form of level-\(1\) modulo \(2\), and of the structure of the space of those modular forms as a module over the Hecke algebra, which have been given in a recent work of Serre and the second-named author.  相似文献   

10.
In this paper we perform a blow-up and quantization analysis of the fractional Liouville equation in dimension 1. More precisely, given a sequence \(u_k :\mathbb {R}\rightarrow \mathbb {R}\) of solutions to
$$\begin{aligned} (-\Delta )^\frac{1}{2} u_k =K_ke^{u_k}\quad \text {in} \quad \mathbb {R}, \end{aligned}$$
(1)
with \(K_k\) bounded in \(L^\infty \) and \(e^{u_k}\) bounded in \(L^1\) uniformly with respect to k, we show that up to extracting a subsequence \(u_k\) can blow-up at (at most) finitely many points \(B=\{a_1,\ldots , a_N\}\) and that either (i) \(u_k\rightarrow u_\infty \) in \(W^{1,p}_{{{\mathrm{loc}}}}(\mathbb {R}{\setminus } B)\) and \(K_ke^{u_k} {\mathop {\rightharpoonup }\limits ^{*}}K_\infty e^{u_\infty }+ \sum _{j=1}^N \pi \delta _{a_j}\), or (ii) \(u_k\rightarrow -\infty \) uniformly locally in \(\mathbb {R}{\setminus } B\) and \(K_k e^{u_k} {\mathop {\rightharpoonup }\limits ^{*}}\sum _{j=1}^N \alpha _j \delta _{a_j}\) with \(\alpha _j\ge \pi \) for every j. This result, resting on the geometric interpretation and analysis of (1) provided in a recent collaboration of the authors with T. Rivière and on a classical work of Blank about immersions of the disk into the plane, is a fractional counterpart of the celebrated works of Brézis–Merle and Li–Shafrir on the 2-dimensional Liouville equation, but providing sharp quantization estimates (\(\alpha _j=\pi \) and \(\alpha _j\ge \pi \)) which are not known in dimension 2 under the weak assumption that \((K_k)\) be bounded in \(L^\infty \) and is allowed to change sign.
  相似文献   

11.
The first main theorem of this paper asserts that any \((\sigma , \tau )\)-derivation d, under certain conditions, either is a \(\sigma \)-derivation or is a scalar multiple of (\(\sigma - \tau \)), i.e. \(d = \lambda (\sigma - \tau )\) for some \(\lambda \in \mathbb {C} \backslash \{0\}\). By using this characterization, we achieve a result concerning the automatic continuity of \((\sigma , \tau \))-derivations on Banach algebras which reads as follows. Let \(\mathcal {A}\) be a unital, commutative, semi-simple Banach algebra, and let \(\sigma , \tau : \mathcal {A} \rightarrow \mathcal {A}\) be two distinct endomorphisms such that \(\varphi \sigma (\mathbf e )\) and \(\varphi \tau (\mathbf e )\) are non-zero complex numbers for all \(\varphi \in \Phi _\mathcal {A}\). If \(d : \mathcal {A} \rightarrow \mathcal {A}\) is a \((\sigma , \tau )\)-derivation such that \(\varphi d\) is a non-zero linear functional for every \(\varphi \in \Phi _\mathcal {A}\), then d is automatically continuous. As another objective of this research, we prove that if \(\mathfrak {M}\) is a commutative von Neumann algebra and \(\sigma :\mathfrak {M} \rightarrow \mathfrak {M}\) is an endomorphism, then every Jordan \(\sigma \)-derivation \(d:\mathfrak {M} \rightarrow \mathfrak {M}\) is identically zero.  相似文献   

12.
We construct Peano curves \(\gamma : [0,\infty ) \rightarrow \mathbb {R}^2\) whose “footprints” \(\gamma ([0,t])\), \(t>0\), have \(C^\infty \) boundaries and are tangent to a common continuous line field on the punctured plane \(\mathbb {R}^2 {\backslash }\{\gamma (0)\}\). Moreover, these boundaries can be taken \(C^\infty \)-close to any prescribed smooth family of nested smooth Jordan curves contracting to a point.  相似文献   

13.
Let \(\Omega \) be a bounded smooth domain of \(R^{n}\). We study the asymptotic behaviour of the solutions to the equation \(\triangle u-|Du|^{q}=f(u)\) in \(\Omega , 1<q<2,\) which satisfy the boundary condition \(u(x)\rightarrow \infty \) as \(x\rightarrow \partial \Omega \). These solutions are called large or blowup solutions. Near the boundary we give lower and upper bounds for the ratio \(\psi (u)/\delta \), where \(\psi (u) = \int _{u}^{\infty }1/\sqrt{2F}dt\), \(F'=f\), \(\delta =dist(x,\partial \Omega )\) or for the ratio \(u/\delta ^{(2-q)/(1-q)}\). When in particular the ratio \(f/F^{q/2}\)is regular at infinity, we find again known results (Bandle and Giarrusso, in Adv Diff Equ 1, 133–150, 1996; Giarrusso, in Comptes Rendus de l’Acad Sci 331, 777–782 2000).  相似文献   

14.
The epireflective subcategories of \(\mathbf{Top}\), that are closed under epimorphic (or bimorphic) images, are \(\{ X \mid |X| \le 1 \} \), \(\{ X \mid X\) is indiscrete\(\} \) and \(\mathbf{Top}\). The epireflective subcategories of \(\mathbf{T_2Unif}\), closed under epimorphic images, are: \(\{ X \mid |X| \le 1 \} \), \(\{ X \mid X\) is compact \(T_2 \} \), \(\{ X \mid \) covering character of X is \( \le \lambda _0 \} \) (where \(\lambda _0\) is an infinite cardinal), and \(\mathbf{T_2Unif}\). The epireflective subcategories of \(\mathbf{Unif}\), closed under epimorphic (or bimorphic) images, are: \(\{ X \mid |X| \le 1 \} \), \(\{ X \mid X\) is indiscrete\(\} \), \(\{ X \mid \) covering character of X is \( \le \lambda _0 \} \) (where \(\lambda _0\) is an infinite cardinal), and \(\mathbf{Unif}\). The epireflective subcategories of \(\mathbf{Top}\), that are algebraic categories, are \(\{ X \mid |X| \le 1 \} \), and \(\{ X \mid X\) is indiscrete\(\} \). The subcategories of \(\mathbf{Unif}\), closed under products and closed subspaces and being varietal, are \(\{ X \mid |X| \le 1 \} \), \(\{ X \mid X\) is indiscrete\(\} \), \(\{ X \mid X\) is compact \(T_2 \} \). The subcategories of \(\mathbf{Unif}\), closed under products and closed subspaces and being algebraic, are \(\{ X \mid X\) is indiscrete\( \} \), and all epireflective subcategories of \(\{ X \mid X\) is compact \(T_2 \} \). Also we give a sharpened form of a theorem of Kannan-Soundararajan about classes of \(T_3\) spaces, closed for products, closed subspaces and surjective images.  相似文献   

15.
Let Q be a quasigroup. For \(\alpha ,\beta \in S_Q\) let \(Q_{\alpha ,\beta }\) be the principal isotope \(x*y = \alpha (x)\beta (y)\). Put \(\mathbf a(Q)= |\{(x,y,z)\in Q^3;\) \(x(yz)) = (xy)z\}|\) and assume that \(|Q|=n\). Then \(\sum _{\alpha ,\beta }\mathbf a(Q_{\alpha ,\beta })/(n!)^2 = n^2(1+(n-1)^{-1})\), and for every \(\alpha \in S_Q\) there is \(\sum _\beta \mathbf a(Q_{\alpha ,\beta })/n! = n(n-1)^{-1}\sum _x(f_x^2-2f_x+n)\ge n^2\), where \(f_x=|\{y\in Q;\) \( y = \alpha (y)x\}|\). If G is a group and \(\alpha \) is an orthomorphism, then \(\mathbf a(G_{\alpha ,\beta })=n^2\) for every \(\beta \in S_Q\). A detailed case study of \(\mathbf a(G_{\alpha ,\beta })\) is made for the situation when \(G = \mathbb Z_{2d}\), and both \(\alpha \) and \(\beta \) are “natural” near-orthomorphisms. Asymptotically, \(\mathbf a(G_{\alpha ,\beta })>3n\) if G is an abelian group of order n. Computational results: \(\mathbf a(7) = 17\) and \(\mathbf a(8) \le 21\), where \(\mathbf a(n) = \min \{\mathbf a(Q);\) \( |Q|=n\}\). There are also determined minimum values for \(\mathbf a(G_{\alpha ,\beta })\), G a group of order \(\le 8\).  相似文献   

16.
In this paper we consider the compactness of \(\beta \)-symplectic critical surfaces in a Kähler surface. Let M be a compact Kähler surface and \(\Sigma _i\subset M\) be a sequence of closed \(\beta _i\)-symplectic critical surfaces with \(\beta _i\rightarrow \beta _0\in (0,\infty )\). Suppose the quantity \(\int _{\Sigma _i}\frac{1}{\cos ^q\alpha _i}d\mu _i\) (for some \(q>4\)) and the genus of \(\Sigma _{i}\) are bounded, then there exists a finite set of points \({{\mathcal {S}}}\subset M\) and a subsequence \(\Sigma _{i'}\) which converges uniformly in the \(C^l\) topology (for any \(l<\infty \)) on compact subsets of \(M\backslash {{\mathcal {S}}}\) to a \(\beta _0\)-symplectic critical surface \(\Sigma \subset M\), each connected component of \(\Sigma \setminus {{\mathcal {S}}}\) can be extended smoothly across \({{\mathcal {S}}}\).  相似文献   

17.
Taking any \(p > 1\), we consider the asymptotically p-linear problem
$$\begin{aligned} \left\{ \begin{array}{ll} - {{\mathrm{div}}}(a(x,u,\nabla u)) + A_t(x,u,\nabla u)\ = \ \lambda ^\infty |u|^{p-2}u + g^\infty (x,u) &{}\quad \hbox {in}\;\Omega ,\\ u\ = \ 0 &{}\quad \hbox {on}\;\partial \Omega , \end{array} \right. \end{aligned}$$
where \(\Omega \) is a bounded domain in \(\mathbb R^N\), \(N\ge 2\), \(A(x,t,\xi )\) is a real function on \(\Omega \times \mathbb R\times \mathbb R^N\) which grows with power p with respect to \(\xi \) and has partial derivatives \(A_t(x,t,\xi ) = \frac{\partial A}{\partial t}(x,t,\xi )\), \(a(x,t,\xi ) = \nabla _\xi A(x,t,\xi )\). If \(A(x,t,\xi ) \rightarrow A^\infty (x,t)\) and \(\frac{g^\infty (x,t)}{|t|^{p-1}} \rightarrow 0\) as \(|t| \rightarrow +\infty \), suitable assumptions, variational methods and either the cohomological index theory or its related pseudo-index one, allow us to prove the existence of multiple nontrivial bounded solutions in the non-resonant case, i.e. if \(\lambda ^\infty \) is not an eigenvalue of the operator associated to \(\nabla _\xi A^\infty (x,\xi )\). In particular, while in [14] the model problem \(A(x,t,\xi ) = \mathcal{A}(x,t) |\xi |^p\) with \(p > N\) is studied, here our goal is twofold: extending such results not only to a more general family of functions \(A(x,t,\xi )\), but also to the more difficult case \(1 < p \le N\).
  相似文献   

18.
For \(x\in [0,1],\) the run-length function \(r_n(x)\) is defined as the length of the longest run of 1’s amongst the first n dyadic digits in the dyadic expansion of x. Let H denote the set of monotonically increasing functions \(\varphi :\mathbb {N}\rightarrow (0,+\infty )\) with \(\lim _{n\rightarrow \infty }\varphi (n)=+\infty \). For any \(\varphi \in H\), we prove that the set
$$\begin{aligned} E_{\max }^\varphi =\left\{ x\in [0,1]:\liminf \limits _{n\rightarrow \infty }\frac{r_n(x)}{\varphi (n)}=0, \limsup \limits _{n\rightarrow \infty }\frac{r_n(x)}{\varphi (n)}=+\infty \right\} \end{aligned}$$
either has Hausdorff dimension one and is residual in [0, 1] or is empty. The result solves a conjecture posed in Li and Wu (J Math Anal Appl 436:355–365, 2016) affirmatively.
  相似文献   

19.
For \(p\in [1,\infty ]\), we establish criteria for the one-sided invertibility of binomial discrete difference operators \({{\mathcal {A}}}=aI-bV\) on the space \(l^p=l^p(\mathbb {Z})\), where \(a,b\in l^\infty \), I is the identity operator and the isometric shift operator V is given on functions \(f\in l^p\) by \((Vf)(n)=f(n+1)\) for all \(n\in \mathbb {Z}\). Applying these criteria, we obtain criteria for the one-sided invertibility of binomial functional operators \(A=aI-bU_\alpha \) on the Lebesgue space \(L^p(\mathbb {R}_+)\) for every \(p\in [1,\infty ]\), where \(a,b\in L^\infty (\mathbb {R}_+)\), \(\alpha \) is an orientation-preserving bi-Lipschitz homeomorphism of \([0,+\infty ]\) onto itself with only two fixed points 0 and \(\infty \), and \(U_\alpha \) is the isometric weighted shift operator on \(L^p(\mathbb {R}_+)\) given by \(U_\alpha f= (\alpha ^\prime )^{1/p}(f\circ \alpha )\). Applications of binomial discrete operators to interpolation theory are given.  相似文献   

20.
We prove a dichotomy between absolute continuity and singularity of the Ginibre point process \(\mathsf {G}\) and its reduced Palm measures \(\{\mathsf {G}_{\mathbf {x}}, \mathbf {x} \in \mathbb {C}^{\ell }, \ell = 0,1,2\ldots \}\), namely, reduced Palm measures \(\mathsf {G}_{\mathbf {x}}\) and \(\mathsf {G}_{\mathbf {y}}\) for \(\mathbf {x} \in \mathbb {C}^{\ell }\) and \(\mathbf {y} \in \mathbb {C}^{n}\) are mutually absolutely continuous if and only if \(\ell = n\); they are singular each other if and only if \(\ell \not = n\). Furthermore, we give an explicit expression of the Radon–Nikodym density \(d\mathsf {G}_{\mathbf {x}}/d \mathsf {G}_{\mathbf {y}}\) for \(\mathbf {x}, \mathbf {y} \in \mathbb {C}^{\ell }\).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号