首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The prize-collecting generalized minimum spanning tree problem (PC-GMSTP), is a generalization of the generalized minimum spanning tree problem (GMSTP) and belongs to the hard core of -hard problems. We describe an exact exponential time algorithm for the problem, as well we present several mixed integer and integer programming formulations of the PC-GMSTP. Moreover, we establish relationships between the polytopes corresponding to their linear relaxations and present an efficient solution procedure that finds the optimal solution of the PC-GMSTP for graphs with up 240 nodes.  相似文献   

2.
3.
This paper presents and investigates a check-in problem for a twofold reason:
  • (i)as a problem of practical and novel scientific interest in itself and
  • (ii)as a problem which requires both a stochastic (simulation) and deterministic (integer programming) approach.
First, simulation is used to determine minimal numbers of desks in order to meet a service level for each separate flight. Next, integer programming formulations are provided to minimize the total number of desks and the total number of desk hours under the realistic constraint that desks for one and the same flight should be adjacent. Both opening intervals with constant and variable capacities will be studied.A numerical example of real world order shows a triple win in waiting time performance, in number of desks and in number of desk hours (staffing). As simulation and integer programming tools are widely available, this combination of simulation and integer programming can thus be regarded as an illustration of a ‘new’ practical OR-tool for optimization.  相似文献   

4.
An algorithm is presented for solving families of integer linear programming problems in which the problems are "related" by having identical objective coefficients and constraint matrix coefficients. The righthand-side constants have the form b + θd where b and d are conformable vectors and θ varies from zero to one.The approach consists primarily of solving the most relaxed problem (θ = 1) using cutting planes and then contracting the region of feasible integer solutions in such a manner that the current optimal integer solution is eliminated.The algorithm was applied to 1800 integer linear programming problems with reasonable success. Integer programming problems which have proved to be unsolvable using cutting planes have been solved by expanding the region of feasible integer solutions (θ = 1) and then contracting to the original region.  相似文献   

5.
One of the most promising solutions to deal with huge data traffic demands in large communication networks is given by flexible optical networking, in particular the flexible grid (flexgrid) technology specified in the ITU-T standard G.694.1. In this specification, the frequency spectrum of an optical fiber link is divided into narrow frequency slots. Any sequence of consecutive slots can be used as a simple channel, and such a channel can be switched in the network nodes to create a lightpath. In this kind of networks, the problem of establishing lightpaths for a set of end-to-end demands that compete for spectrum resources is called the routing and spectrum allocation problem (RSA). Due to its relevance, this problem has been intensively studied in the last couple of years. It has been shown to be NP-hard (Christodoulopoulos et al. in IEEE J Lightw Technol 29(9):1354–1366, 2011; Wang et al. in IEEE J Opt Commun Netw 4(11):906–917, 2012) and several models and formulations have been proposed, leading to different solution approaches. In this work, we explore integer programming models for RSA, analyzing their effectiveness over known instances. We resort to several modeling techniques, to find natural formulations of this problem. Since integer programming techniques are known to provide successful practical approaches for several combinatorial optimization problems, the aim of this work is to explore a similar approach for RSA.  相似文献   

6.
Ring structures in telecommunications are taking on increasing importance because of their self-healing properties. We consider a ring design problem in which several stacked self-healing rings (SHRs) follow the same route, and, thus, pass through the same set of nodes. Traffic can be exchanged among these stacked rings at a designated hub node. Each non-hub node may be connected to multiple rings. It is necessary to determine to which rings each node should be connected, and how traffic should be routed on the rings. The objective is to optimize the tradeoff between the costs for connecting nodes to rings and the costs for routing demand on multiple rings. We describe a genetic algorithm that finds heuristic solutions for this problem. The initial generation of solutions includes randomly-generated solutions, complemented by seed solutions obtained by applying a greedy randomized adaptive search procedure (GRASP) to two related problems. Subsequent generations are created by recombining pairs of parent solutions. Computational experiments compare the genetic algorithm with a commercial integer programming package.  相似文献   

7.
Goal programming, and in particular lexicographic goal programming (i.e. goal programming within a so-called ‘pre-emptive priority’ structure or having non-Archimedean weights), has become one of the most widely used of the approaches for multi-objective mathematical programming. While also applicable to non-linear or integer models, most of the literature has considered the lexicographic linear goal-programming model and its solution via primal simplex-based methods. However, in many cases, enhanced efficiency (and significant additional flexibility) may be gained via an investigation of the dual of this problem. In this paper we consider an algorithm for solving such a dual and also indicate how it may be implemented on conventional (i.e. single objective) simplex software.  相似文献   

8.
To ensure uninterrupted service, telecommunication networks contain excess (spare) capacity for rerouting (restoring) traffic in the event of a link failure. We study the NP-hard capacity planning problem of economically installing spare capacity on a network to permit link restoration of steady-state traffic. We present a planning model that incorporates multiple facility types, and develop optimization-based heuristic solution methods based on solving a linear programming relaxation and minimum cost network flow subproblems. We establish bounds on the performance of the algorithms, and discuss problem instances that nearly achieve these worst-case bounds. In tests on three real-world problems and numerous randomly-generated problems containing up to 50 nodes and 150 edges, the heuristics provide good solutions (often within 0.5% of optimality) to problems with single facility type, in equivalent or less time than methods from the literature. For multi-facility problems, the gap between our heuristic solution values and the linear programming bounds are larger. However, for small graphs, we show that the optimal linear programming value does not provide a tight bound on the optimal integer value, and our heuristic solutions are closer to optimality than implied by the gaps.  相似文献   

9.
In this paper we consider the use of extended formulations in LP-based algorithms for mixed integer conic quadratic programming (MICQP). Extended formulations have been used by Vielma et al. (INFORMS J Comput 20: 438–450, 2008) and Hijazi et al. (Comput Optim Appl 52: 537–558, 2012) to construct algorithms for MICQP that can provide a significant computational advantage. The first approach is based on an extended or lifted polyhedral relaxation of the Lorentz cone by Ben-Tal and Nemirovski (Math Oper Res 26(2): 193–205 2001) that is extremely economical, but whose approximation quality cannot be iteratively improved. The second is based on a lifted polyhedral relaxation of the euclidean ball that can be constructed using techniques introduced by Tawarmalani and Sahinidis (Math Programm 103(2): 225–249, 2005). This relaxation is less economical, but its approximation quality can be iteratively improved. Unfortunately, while the approach of Vielma, Ahmed and Nemhauser is applicable for general MICQP problems, the approach of Hijazi, Bonami and Ouorou can only be used for MICQP problems with convex quadratic constraints. In this paper we show how a homogenization procedure can be combined with the technique by Tawarmalani and Sahinidis to adapt the extended formulation used by Hijazi, Bonami and Ouorou to a class of conic mixed integer programming problems that include general MICQP problems. We then compare the effectiveness of this new extended formulation against traditional and extended formulation-based algorithms for MICQP. We find that this new formulation can be used to improve various LP-based algorithms. In particular, the formulation provides an easy-to-implement procedure that, in our benchmarks, significantly improved the performance of commercial MICQP solvers.  相似文献   

10.
We study the capacitated m-ring-star problem (CmRSP) that faces the design of minimum cost network structure that connects customers with m rings using a set of ring connections that share a distinguished node (depot), and optionally star connections that connect customers to ring nodes. Ring and star connections have some associated costs. Also, rings can include transit nodes, named Steiner nodes, to reduce the total network cost if possible. The number of customers in each ring-star (ringʼs customers and customer connected to it through star connections) have an upper bound (capacity).These kind of networks are appropriate in optical fiber urban environments. CmRSP is know to be NP-Hard. In this paper we propose an integer linear programming formulation and a branch-and-cut algorithm.  相似文献   

11.
We consider the problem of locating, on a network, n new facilities that interact with m existing facilities. In addition, pairs of new facilities interact. This problem, the multimedian location problem on a network, is known to be NP-hard. We give a new integer programming formulation of this problem, and show that its linear programming relaxation provides a lower bound that is superior to the bound provided by a previously published formulation. We also report results of computational testing with both formulations.  相似文献   

12.
The existence of reliable and flexible FORTRAN programs for integer linear programming has recently enabled the development of very efficient algorithms for the travelling salesman problem. The main characteristic of these algorithms is the relaxation of most of the constraints of the problem during its solution. The same approach can be used for the solution of the m-salesmen problem in which m salesmen starting from the same city must visit only once n cities at minimum cost. The number of salesmen can be fixed in advance or allowed to vary, upper and lower bounds set on the number of salesmen and even fixed costs associated with the salesmen. The results obtained so far are very encouraging. Problems of up to 100 cities have been solved optimally for the m-travelling salesmen case and other more complex problems are currently under study.  相似文献   

13.
The hypergraph matching problem is to find a largest collection of disjoint hyperedges in a hypergraph. This is a well-studied problem in combinatorial optimization and graph theory with various applications. The best known approximation algorithms for this problem are all local search algorithms. In this paper we analyze different linear and semidefinite programming relaxations for the hypergraph matching problem, and study their connections to the local search method. Our main results are the following:
  • We consider the standard linear programming relaxation of the problem. We provide an algorithmic proof of a result of Füredi, Kahn and Seymour, showing that the integrality gap is exactly ${k-1+\frac{1}{k}}$ for k-uniform hypergraphs, and is exactly k ? 1 for k-partite hypergraphs. This yields an improved approximation algorithm for the weighted 3-dimensional matching problem. Our algorithm combines the use of the iterative rounding method and the fractional local ratio method, showing a new way to round linear programming solutions for packing problems.
  • We study the strengthening of the standard LP relaxation by local constraints. We show that, even after linear number of rounds of the Sherali-Adams lift-and-project procedure on the standard LP relaxation, there are k-uniform hypergraphs with integrality gap at least k ? 2. On the other hand, we prove that for every constant k, there is a strengthening of the standard LP relaxation by only a polynomial number of constraints, with integrality gap at most ${\frac{k+1}{2}}$ for k-uniform hypergraphs. The construction uses a result in extremal combinatorics.
  • We consider the standard semidefinite programming relaxation of the problem. We prove that the Lovász ${\vartheta}$ -function provides an SDP relaxation with integrality gap at most ${\frac{k+1}{2}}$ . The proof gives an indirect way (not by a rounding algorithm) to bound the ratio between any local optimal solution and any optimal SDP solution. This shows a new connection between local search and linear and semidefinite programming relaxations.
  •   相似文献   

    14.
    A network design problem in which every pair of nodes can communicate directly is discussed. However, there is an incentive to combine flow from different sources, namely, if the total flow through a link exceeds the prescribed threshold, then the cost of this flow is discounted by a factor α. Alternative mixed integer linear formulations for this problem are presented. Computational results comparing the models on a set of benchmark problems are also presented. The results show the effectiveness of the formulations: for discounts of 5–10%, the gaps between linear and integer solutions are within few percent. Such a model offers economic incentives in building and utilizing communication networks.  相似文献   

    15.
    Commercial branch and bound codes for solving the general mixed integer linear programming problem commence by solving the linear programming relaxation of the submitted problem, terminating if the relaxation is unbounded. It is assumed that the submitted problem is either unbounded or has no feasible solutions. It is shown that the assumption is correct for all integer programming problems which can be submitted to the currently available codes (though counter examples which cannot be so submitted are given), but that the assumption is generally incorrect for discrete linear programming problems (using for example the special ordered set construct). Sufficient conditions on formulations to ensure its correctness are given. One possible formulation approach, applicable to special ordered set situations, is discussed.  相似文献   

    16.
    In this paper we deal with a capacitated hub location problem arising in a freight logistics context; in particular, we have the need of locating logistics platforms for containers travelling via road and rail. The problem is modelled on a weighed multimodal network. We give a mixed integer linear programming model for the problem, having the goal of minimizing the location and shipping costs. The proposed formulation presents some novel features for modelling capacity bounds that are given both for the candidate hub nodes and the arcs incident to them; further, the containerised origin-destination (\(o-d)\) demand can be split among several platforms and different travelling modes. Note that here the network is not fully connected and only one hub for each \(o-d\) pair is used, serving both to consolidate consignments on less transport connections and as reloading point for a modal change. Results of an extensive computational experimentation performed with randomly generated instances of different size and capacity values are reported. In the test bed designed to validate the proposed model all the instances up to 135 nodes and 20 candidate hubs are optimally solved in few seconds by the commercial solver CPLEX 12.5.  相似文献   

    17.
    This article is a survey about recent developments in the area of test sets of families of linear integer programs. Test sets are finite subsets of the integer lattice that allow to improve any given feasible non-optimal point of an integer program by one element in the set. There are various possible ways of defining test sets depending on the view that one takes: theGraver test set is naturally derived from a study of the integral vectors in cones; theScarf test set (neighbors of the origin) is strongly connected to the study of lattice point free convex bodies; the so-calledreduced Gröbner basis of an integer program is obtained from a study of generators of polynomial ideals. This explains why the study of test sets connects various branches of mathematics. We introduce in this paper these three kinds of test sets and discuss relations between them. We also illustrate on various examples such as the minimum cost flow problem, the knapsack problem and the matroid optimization problem how these test sets may be interpreted combinatorially. From the viewpoint of integer programming a major interest in test sets is their relation to the augmentation problem. This is discussed here in detail. In particular, we derive a complexity result of the augmentation problem, we discuss an algorithm for solving the augmentation problem by computing the Graver test set and show that, in the special case of an integer knapsack problem with 3 coefficients, the augmentation problem can be solved in polynomial time.Supported by a Gerhard-Hess-Forschungsförderpreis of the German Science Foundation (DFG).  相似文献   

    18.
    A tight continuous relaxation is a crucial factor in solving mixed integer formulations of many NP-hard combinatorial optimization problems. The (weighted) max k-cut problem is a fundamental combinatorial optimization problem with multiple notorious mixed integer optimization formulations. In this paper, we explore four existing mixed integer optimization formulations of the max k-cut problem. Specifically, we show that the continuous relaxation of a binary quadratic optimization formulation of the problem is: (i) stronger than the continuous relaxation of two mixed integer linear optimization formulations and (ii) at least as strong as the continuous relaxation of a mixed integer semidefinite optimization formulation. We also conduct a set of experiments on multiple sets of instances of the max k-cut problem using state-of-the-art solvers that empirically confirm the theoretical results in item (i). Furthermore, these numerical results illustrate the advances in the efficiency of global non-convex quadratic optimization solvers and more general mixed integer nonlinear optimization solvers. As a result, these solvers provide a promising option to solve combinatorial optimization problems. Our codes and data are available on GitHub.  相似文献   

    19.
    This paper deals with some applications of Markov decision models for which the linear programming method is efficient. These models are replacement models (with the optimal stopping problem as special case), separable models (including the inventory model as special case) and the multi-armed bandit model. In the companion paper Survey of linear programming for standard and nonstandard Markovian control problems. Part I: Theory, general linear programming methods are discussed. These linear programming formulations are the starting point for the efficient methods that will be derived for the special models.  相似文献   

    20.
    We show that for any optimal solution for a given separable quadratic integer programming problem there exist an optimal solution for its continuous relaxation such that wheren is the number of variables and(A) is the largest absolute subdeterminant of the integer constraint matrixA. Also for any feasible solutionz, which is not optimal for the separable quadratic integer programming problem, there exists a feasible solution having greater objective function value and with . We further prove, under some additional assumptions, that the distance between a pair of optimal solutions to an integer quadratic programming problem with right hand side vectorsb andb, respectively, depends linearly on b–b1. Finally the validity of all the results for nonseparable mixed-integer quadratic programs is established. The proximity results obtained in this paper are extensions of some of the results described in Cook et al. (1986) for linear integer programming.This research was partially supported by Natural Sciences and Engineering Research Council of Canada Grant 5-83998.  相似文献   

    设为首页 | 免责声明 | 关于勤云 | 加入收藏

    Copyright©北京勤云科技发展有限公司  京ICP备09084417号