首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We consider the finite field dependent BRST (FFBRST) transformations in the context of Hamiltonian formulation using Batalin-Fradkin-Vilkovisky method. The non-trivial Jacobian of such transformations is calculated in extended phase space. The contribution from Jacobian can be written as exponential of some local functional of fields which can be added to the effective Hamiltonian of the system. Thus, FFBRST in Hamiltonian formulation with extended phase space also connects different effective theories. We establish this result with the help of two explicit examples. We also show that the FFBRST transformations is similar to the canonical transformations in the sector of Lagrange multiplier and its corresponding momenta.  相似文献   

2.
In this paper we discuss the absolutely anticommuting nilpotent symmetries for perturbative quantum gravity in general curved spacetime in linear and non-linear gauges. Further, we analyze the finite field-dependent BRST (FFBRST) transformation for perturbative quantum gravity in general curved spacetime. The FFBRST transformation changes the gauge-fixing and ghost parts of the perturbative quantum gravity within functional integration. However, the operation of such symmetry transformation on the generating functional of perturbative quantum gravity does not affect the theory on physical ground. The FFBRST transformation with appropriate choices of finite BRST parameter connects non-linear Curci–Ferrari and Landau gauges of perturbative quantum gravity. The validity of the results is also established at quantum level using Batalin–Vilkovisky (BV) formulation.  相似文献   

3.
Recently a new type of quadratic gauge was introduced in QCD in which the degrees of freedom are suggestive of a phase of abelian dominance. In its simplest form it is also free of Gribov ambiguity. However this gauge is not suitable for usual perturbation theory. The finite field dependent BRST (FFBRST) transformation is a method established to interrelate generating functionals for different effective versions of gauge fixed field theories. In this paper we propose a FFBRST transformation suitable for transforming the theory in the new quadratic gauge into the standard Lorenz gauge Faddeev–Popov version of the effective lagrangian. The task is made interesting by the fact that the effective lagrangian is invariant under two different BRST transformations which leads to suitable extension of the previous procedures to accomplish the required result. We are thus able to identify a field redefinition to go from a non-perturbative phase of QCD to perturbative QCD.  相似文献   

4.
We establish the connection between the generating functional for the first class theories and the generating functional for the second class theories using the finite field dependent BRST (FFBRST) transformation. We show this connection with the help of explicit calculations in two different models. The generating functional of the Proca model is obtained from the generating functional of the Stueckelberg theory for massive spin 1 vector field using FFBRST transformation. In the other example we relate the generating functionals for gauge invariant and gauge variant theories for a self-dual chiral boson.  相似文献   

5.
We study the field/antifield formulation of pure Yang Mills theory in the framework of the finite field dependent BRST transformation. We show that the generating functionals corresponding to different solutions of the quantum master equation are connected through the finite field dependent BRST transformations. We establish this result with the help of several explicit examples.  相似文献   

6.
We continue the study of finite field-dependent BRST (FFBRST) symmetry in the quantum theory of gauge fields. An expression for the Jacobian of path integral measure is presented, depending on a finite field-dependent parameter, and the FFBRST symmetry is then applied to a number of well-established quantum gauge theories in a form which incudes higher-derivative terms. Specifically, we examine the corresponding versions of the Maxwell theory, non-Abelian vector field theory, and gravitation theory. We present a systematic mapping between different forms of gauge-fixing, including those with higher-derivative terms, for which these theories have better renormalization properties. In doing so, we also provide the independence of the S-matrix from a particular gauge-fixing with higher derivatives. Following this method, a higher-derivative quantum action can be constructed for any gauge theory in the FFBRST framework.  相似文献   

7.
The Einstein–Hilbert action in the context of higher derivative theories is considered for finding their BRST symmetries. Being a constraint system, the model is transformed in the minisuperspace language with the FRLW background and the gauge symmetries are explored. Exploiting the first order formalism developed by Banerjee et al. the diffeomorphism symmetry is extracted. From the general form of the gauge transformations of the field, the analogous BRST transformations are calculated. The effective Lagrangian is constructed by considering two gauge-fixing conditions. Further, the BRST (conserved) charge is computed, which plays an important role in defining the physical states from the total Hilbert space of states. The finite field-dependent BRST formulation is also studied in this context where the Jacobian for the functional measure is illustrated specifically.  相似文献   

8.
We consider effective actions of the cosmological Friedmann–Robertson–Walker (FRW) models and discuss their fermionic rigid BRST invariance. Further, we demonstrate the finite field-dependent BRST transformations as a limiting case of continuous field-dependent BRST transformations described in terms of continuous parameter κκ. The Jacobian under such finite field-dependent BRST transformations is computed explicitly, which amounts an extra piece in the effective action within functional integral. We show that for a particular choice of a parameter the finite field-dependent BRST transformation maps the generating functional for FRW models from one gauge to another.  相似文献   

9.
Enlarging the gauge group with two extra fermionic coordinates, we provide a unified geometric formulation of the BRST and anti-BRST transformations for gravity in the vierbein formalism and simple supergravity.  相似文献   

10.
Within the framework of the Becchi–Rouet–Stora–Tyutin (BRST) formalism, we demonstrate the existence of the novel off-shell nilpotent (anti-)dual-BRST symmetries in the context of a six (5+1)-dimensional (6D) free Abelian 3-form gauge theory. Under these local and continuous symmetry transformations, the total gauge-fixing term of the Lagrangian density remains invariant. This observation should be contrasted with the off-shell nilpotent (anti-)BRST symmetry transformations, under which, the total kinetic term of the theory remains invariant. The anticommutator of the above nilpotent (anti-)BRST and (anti-)dual-BRST transformations leads to the derivation of a bosonic symmetry in the theory. There exists a discrete symmetry transformation in the theory which provides a thread of connection between the nilpotent (anti-)BRST and (anti-)dual-BRST transformations. This theory is endowed with a ghost-scale symmetry, too. We discuss the algebra of these symmetry transformations and show that the structure of the algebra is reminiscent of the algebra of de Rham cohomological operators of differential geometry.  相似文献   

11.
In this paper we study the third quantized super-group field cosmology, a model in multiverse scenario, in Batalin-Vilkovisky (BV) formulation. Further, we propose the superfield/super-antifield dependent BRST symmetry transformations. Within this formulation we establish connection between the two different solutions of the quantum master equation within the BV formulation.  相似文献   

12.
A topological gauge invariant Lagrangian for Seiberg--Witten monopoleequations is constructed. The action is invariant under a huge classof gauge transformations which after BRST fixing leads to the BRSTinvariant action associated to Seiberg--Witten monopole topologicaltheory. The supersymmetric transformation of the fields involved inthe construction is obtained from the nilpotent BRST algebra.  相似文献   

13.
S G Kamath 《Pramana》1992,38(1):11-20
The Hamiltonian formulation of the BRST method for quantizing constrained systems developed recently by Nemeschanskyet al is applied to the well-known problem of the conical pendulum in classical mechanics. The similarity of the system to a gauge theory wherein the two constraints serve as generators of local Abelian gauge transformations is also pointed out. The definition of the physical states of the system as a gauge theory and also as a BRST invariant theory is then discussed in some detail.  相似文献   

14.
We demonstrate the existence of the nilpotent and absolutely anticommuting Becchi–Rouet–Stora–Tyutin (BRST) and anti-BRST symmetry transformations for the four (3+1)-dimensional (4D) topologically massive Abelian U(1) gauge theory that is described by the coupled Lagrangian densities (which incorporate the celebrated (BF) term). The absolute anticommutativity of the (anti-) BRST symmetry transformations is ensured by the existence of a Curci–Ferrari type restriction that emerges from the superfield formalism as well as from the equations of motion which are derived from the above coupled Lagrangian densities. We show the invariance of the action from the point of view of the symmetry considerations as well as superfield formulation. We discuss, furthermore, the topological term within the framework of superfield formalism and provide the geometrical meaning of its invariance under the (anti-)BRST symmetry transformations.  相似文献   

15.
The three fundamental geometric components of Yang-Mills theory –gauge field, gauge fixing and ghost field– are unified in a new object: an extended connection in a properly chosen principal fiber bundle. To do this, it is necessary to generalize the notion of gauge fixing by using a gauge fixing connection instead of a section. From the equations for the extended connection’s curvature, we derive the relevant BRST transformations without imposing the usual horizontality conditions. We show that the gauge field’s standard BRST transformation is only valid in a local trivialization and we obtain the corresponding global generalization. By using the Faddeev-Popov method, we apply the generalized gauge fixing to the path integral quantization of Yang-Mills theory. We show that the proposed gauge fixing can be used even in the presence of a Gribov’s obstruction.  相似文献   

16.
《Nuclear Physics B》1995,433(3):712-736
We reformulate the BRST quantisation of chiral Virasoro and W3 worldsheet gravities. Our approach follows directly the classic BRST formulation of Yang-Mills theory in employing a derivative gauge condition instead of the conventional conformal gauge condition, supplemented by an introduction of momenta in order to put the ghost action back into first-order form. The consequence of these simple changes is a considerable simplification of the BRST formulation, the evaluation of anomalies and the expression of Wess-Zumino consistency conditions. In particular, the transformation rules of all fields now constitute a canonical transformation generated by the BRST operator Q, and we obtain in this reformulation a new result that the anomaly in the BRST Ward identity is obtained by application of the anomalous operator Q2, calculated using operator products, to the gauge fermion.  相似文献   

17.
The bosonic string is quantized in a path-integral formulation in harmonic gauge. The BRST transformations are identified and the stress tensor is constructed. The conformal anomaly is computed, and has the standard (D−26) form. The ghost number current is shown to have no anomalies, even on a curved world sheet.  相似文献   

18.
The transverse symmetry transformations associated with the normal symmetry transformations are proposed to build the transverse constraints on the basic vertices in gauge theories. I show that, while the BRST symmetry in non-Abelian gauge theory QCD (Quantum Chromodynamics) leads to the Slavnov-Taylor identity for the quark-gluon vertex which constrains the longitudinal part of thevertex, the transverse symmetry transformation associated with the BRST symmetry enables to derive the transverse Slavnov-Taylor identity for the quark-gluon vertex, which constrains the transverse part of the quark-gluon vertex from the gauge symmetry of QCD.  相似文献   

19.
A BRST transformation incorporating general coordinate, Lorentz and Weyl transformations is defined. The variation of the effective action for fermions moving in an external gravitational field is calculated using an extended BRST analysis. InD=2 dimensions the Schwinger terms appearing in the equal time commutators of energy momentum tensors are related to the gravitational and Weyl anomalies for a massless spin 0 and a massless spin 1/2 model, respectively.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号