共查询到20条相似文献,搜索用时 15 毫秒
1.
大长径比金纳米棒的合成及其单细胞毒性研究 总被引:1,自引:0,他引:1
利用三步晶种生长法合成长径比约为14的大长径比金纳米棒(GNR),利用巯基十一酸(MUDA)对金纳米棒表面进行了生物适应性修饰,并在宏观水平上研究了修饰前后的金纳米棒在对细胞活性的影响。利用单细胞方法分别考察了修饰后的纳米金棒对细胞贴壁过程、增殖速率、细胞内ROS以及骨架排布的影响。虽然MTT细胞活性结果显示内吞后的金纳米棒对细胞无毒,但单细胞毒性分析方法发现,不同浓度纳米金棒对早期贴壁过程有较小的影响,且内吞的纳米金棒在一定程度上促进了细胞的增殖,而高浓度下纳米金棒引起了细胞内ROS含量的升高,并破坏了细胞内骨架纤维排布。本研究建立了用单细胞行为分析纳米颗粒对细胞毒性的方法,证明了以往仅仅利用MTT等宏观手段分析纳米材料生物适应性是不足的。纳米材料在生物医学领域的进一步应用还应考虑单细胞及分子水平上的毒性效应。 相似文献
2.
利用光镊拉曼光谱技术研究吲哚对金葡菌细胞中葡萄球菌黄素合成的抑制作用以及色素含量在分批培养过程中的动态变化。收集经不同浓度吲哚(终浓度为0,0.2,0.6,0.8,1.2和1.5 mmol/L)处理后的以及不同培养时间的金葡菌单细胞的拉曼光谱,以光谱1523 cm-1峰强度表征色素含量,并与紫外可见分光光度法得到的结果进行比较。结果表明,细菌拉曼光谱1523 cm-1峰强度与分光光度法测得的色素含量有良好的线性关系,相关系数达0.9772;群体和单细胞水平的光谱数据均表明,吲哚可剂量依赖性地抑制葡萄球菌黄素的合成,色素含量降低幅度超过70%;在分批培养中细菌色素含量在对数生长中期(12 h)达到最大值,各个时间点的群体内部细胞间色素含量的异质性较小,RSD在39.2%~61.1%之间。本研究表明光镊拉曼光谱技术是一种在单细胞水平分析葡萄球菌黄素含量的可靠方法。 相似文献
3.
4.
5.
Faiyaz Shakeel Moad M. Alamer Prawez Alam Abdullah Alshetaili Nazrul Haq Fars K. Alanazi Sultan Alshehri Mohammed M. Ghoneim Ibrahim A. Alsarra 《Molecules (Basel, Switzerland)》2021,26(24)
Luteolin (LUT) is a natural pharmaceutical compound that is weakly water soluble and has low bioavailability when taken orally. As a result, the goal of this research was to create self-nanoemulsifying drug delivery systems (SNEDDS) for LUT in an attempt to improve its in vitro dissolution and hepatoprotective effects, resulting in increased oral bioavailability. Using the aqueous phase titration approach and the creation of pseudo-ternary phase diagrams with Capryol-PGMC (oil phase), Tween-80 (surfactant), and Transcutol-HP (co-emulsifier), various SNEDDS of LUT were generated. SNEDDS were assessed for droplet size, polydispersity index (PDI), zeta potential (ZP), refractive index (RI), and percent of transmittance (percent T) after undergoing several thermodynamic stability and self-nanoemulsification experiments. When compared to LUT suspension, the developed SNEDDS revealed considerable LUT release from all SNEDDS. Droplet size was 40 nm, PDI was <0.3, ZP was −30.58 mV, RI was 1.40, percent T was >98 percent, and drug release profile was >96 percent in optimized SNEDDS of LUT. For in vivo hepatoprotective testing in rats, optimized SNEDDS was chosen. When compared to LUT suspension, hepatoprotective tests showed that optimized LUT SNEDDS had a substantial hepatoprotective impact. The findings of this investigation suggested that SNEDDS could improve bioflavonoid LUT dissolution rate and therapeutic efficacy. 相似文献
6.
Hoyeon Lee Soojin Uhm Jung‐Won Shin Hyun Mi Jeon Sun Dongbang Hyo Sung Jung Yun‐Cheol Na Prof. Chulhun Kang Prof. Jong Seung Kim 《化学:亚洲杂志》2015,10(12):2695-2700
A galactose‐appended drug delivery system released camptothecin (CPT) to lysosomes of HepG2 hepatoma cells, resulting in the cell resistance to the anticancer drug. We found that the resistance to CPT is caused by alteration of the drug release from the prodrug in lysosomes, emphasizing that the final delivery locations may critically influence drug efficacy. 相似文献
7.
Dr. Michael F. Pill Dr. Katharina Holz Nils Preußke Florian Berger Prof. Dr. Hauke Clausen‐Schaumann Prof. Dr. Ulrich Lüning Prof. Dr. Martin K. Beyer 《Chemistry (Weinheim an der Bergstrasse, Germany)》2016,22(34):12034-12039
Mechanochemical cycloreversion of cyclobutane is known from ultrasound experiments. It is, however, not clear which forces are required to induce the cycloreversion. In atomic force microscopy (AFM) experiments, on the other hand, it is notoriously difficult to assign the ruptured bond. We have solved this problem through the synthesis of tailored macrocycles, in which the cyclobutane mechanophore is bypassed by an ethylene glycol chain of specific length. This macrocycle is covalently anchored between a glass substrate and an AFM cantilever by polyethylene glycol linkers. Upon mechanical stretching of the macrocycle, cycloreversion occurs, which is identified by a defined length increase of the stretched polymer. The measured length change agrees with the value calculated with the external force explicitly included (EFEI) method. By using two different lengths for the ethylene glycol safety line, the assignment becomes unambiguous. Mechanochemical cycloreversion of cyclobutane is observed at forces above 1.7 nN. 相似文献
8.
9.
The design and structural frameworks for targeted drug delivery of medicinal compounds and improved cell imaging have been developed with several advantages. However, metal-organic frameworks (MOFs) are supplemented tremendously for medical uses with efficient efficacy. These MOFs are considered as an absolutely new class of porous materials, extensively used in drug delivery systems, cell imaging, and detecting the analytes, especially for cancer biomarkers, due to their excellent biocompatibility, easy functionalization, high storage capacity, and excellent biodegradability. While Zn-metal centers in MOFs have been found by enhanced efficient detection and improved drug delivery, these Zn-based MOFs have appeared to be safe as elucidated by different cytotoxicity assays for targeted drug delivery. On the other hand, the MOF-based heterogeneous catalyst is durable and can regenerate multiple times without losing activity. Therefore, as functional carriers for drug delivery, cell imaging, and chemosensory, MOFs’ chemical composition and flexible porous structure allowed engineering to improve their medical formulation and functionality. This review summarizes the methodology for fabricating ultrasensitive and selective Zn-MOF-based sensors, as well as their application in early cancer diagnosis and therapy. This review also offers a systematic approach to understanding the development of MOFs as efficient drug carriers and provides new insights on their applications and limitations in utility with possible solutions. 相似文献
10.
Due to the growing prevalence of incurable diseases, such as cancer, worldwide, nowadays, the development of smart drug delivery systems is an inevitable necessity. Chemotaxis-driven movement of ionic liquid microdroplets containing therapeutic compounds is a well-known example of a smart drug delivery system. This review aims to classify, summarize, and compare ionic liquid-based chemotaxis systems in an easily understandable article. Chemotaxis is the basis of the movement of cells and microorganisms in biological environments, which is the cause of many vital biochemical and biological processes. This review attempts to summarize the available literature on single-component biomimetic and self-propelling microdroplet systems based on ionic liquids, which exhibit chemotaxis and spontaneously move in a determined direction by an external gradient, particularly a chemical change. It also aims to review artificial ionic liquid-based chemotaxis systems that can be used as drug carriers for medical purposes. The various ionic liquids used for this purpose are discussed, and different forms of chemical gradients and mechanisms that cause movement in microfluidic channels will be reviewed. 相似文献
11.
Clarinda Costa Teresa Casimiro Maria Luísa Corvo Ana Aguiar-Ricardo 《Molecules (Basel, Switzerland)》2021,26(24)
Drug delivery systems (DDS) often comprise biopharmaceuticals in aqueous form, making them susceptible to physical and chemical degradation, and therefore requiring low temperature storage in cold supply and distribution chains. Freeze-drying, spray-drying, and spray-freeze-drying are some of the techniques used to convert biopharmaceuticals-loaded DDS from aqueous to solid dosage forms. However, the risk exists that shear and heat stress during processing may provoke DDS damage and efficacy loss. Supercritical fluids (SCF), specifically, supercritical carbon dioxide (scCO2), is a sustainable alternative to common techniques. Due to its moderately critical and tunable properties and thermodynamic behavior, scCO2 has aroused scientific and industrial interest. Therefore, this article reviews scCO2-based techniques used over the year in the production of solid biopharmaceutical dosage forms. Looking particularly at the use of scCO2 in each of its potential roles—as a solvent, co-solvent, anti-solvent, or co-solute. It ends with a comparison between the compound’s stability using supercritical CO2-assisted atomization/spray-drying and conventional drying. 相似文献
12.
13.
Seyyed Hossein Miraghaie Ashkan Zandi Zahra Davari Mohamad Sadegh Mousavi-kiasary Zohre Saghafi Ali Gilani Yasin Kordehlachin Fatemeh Shojaeian Amir Mamdouh Zahra Heydari Farid Abedin Dorkoosh Babak Kaffashi Mohammad Abdolahad 《Macromolecular bioscience》2023,23(9):2300181
Pure positive electrostatic charges (PPECs) show suppressive effect on the proliferation and metabolism of invasive cancer cells without affecting normal tissues. PPECs are used for the delivery of drug-loaded polymeric nanoparticles (DLNs) capped with negatively charged poly(lactide-co-glycolide) (PLGA) and Poly(vinyl-alcohol) PVA into the tumor site of mouse models. The charged patch is installed on top of the skin in the mouse models' tumor region, and the controlled selective release of the drug is assayed by biochemical, radiological, and histological experiments on both tumorized models and normal rats' livers. It is found that DLNs synthesized by PLGA show great attraction to PPECs due to their stable negative charges, which would not degrade immediately in blood. The burst and drug release after less than 48h of this synthesized DLNs are 10% and 50%, respectively. These compounds can deliver the loaded-drug into the tumor site with the assistance of PPECs, and the targeted-retarded release will take place. Hence, local therapy can be achieved with much lower drug concentration (conventional chemotherapy [2 mg kg−1] versus DLNs-based chemotherapy [0.75 mg kg−1]) with negligible side effects in non-targeted organs. PPECs have many potential clinical applications for advanced-targeted chemotherapy with the lowest discernible side effects. 相似文献
14.
细胞内组分复杂、含量低,因此测定单细胞内化学组分的分析方法必须具有灵敏度高、选择性好和分辨率高的特点。高灵敏度的荧光检测技术是单细胞分析中应用最多的检测方法之一。但是细胞内绝大部分物质其天然态是没有荧光的,且由于细胞膜的阻碍,衍生试剂不能自由地进入细胞内。为了使衍生试剂透过细胞膜标记细胞内待测物质而不引起显著的稀释效应,已进行了大量的研究工作。本文综述了在单细胞分析中常用的荧光标记方法,包括细胞作为微反应器的衍生法,借助于脂质体与聚乙二醇(PEG)等增加细胞膜通透性的衍生方法和在毛细管/芯片毛细管电泳分析单细胞时柱上衍生和柱后衍生法以及量子点的标记法等。对这些方法的原理、特点和在单细胞分析中的应用也做了较为详细的阐述。 相似文献
15.
Mohammad Hossain Shariare Md Asaduzzaman Khan Abdullah Al-Masum Junayet Hossain Khan Jamal Uddin Mohsin Kazi 《Molecules (Basel, Switzerland)》2022,27(19)
Thymoquinone, a well-known phytoconstituent derived from the seeds of Nigella sativa, exhibits unique pharmacological activities However, despite the various medicinal properties of thymoquinone, its administration in vivo remains challenging due to poor aqueous solubility, bioavailability, and stability. Therefore, an advanced drugdelivery system is required to improve the therapeutic outcome of thymoquinone by enhancing its solubility and stability in biological systems. Therefore, this study is mainly focused on preparing thymoquinone-loaded liposomes to improve its physicochemical stability in gastric media and its performance in different cancer cell line studies. Liposomes were prepared using phospholipid extracted from egg yolk. The liposomal nano preparations were evaluated in terms of hydrodynamic diameter, zeta potential, microscopic analysis, and entrapment efficiency. Cell-viability measurements were conducted using breast and cervical cancer cell lines. Optimized liposomal preparation exhibited polygonal, globule-like shape with a hydrodynamic diameter of less than 260 nm, PDI of 0.6, and zeta potential values of −23.0 mV. Solid-state characterizations performed using DSC and XRPD showed that the freeze-dried liposomal preparations were amorphous in nature. Gastric pH stability data showed no physical changes (precipitation, degradation) or significant growth in the average size of blank and thymoquinone-loaded liposomes after 24 h. Cell line studies exhibited better performance for thymoquinone-loaded liposomal drug delivery system compared with the thymoquinone-only solution; this finding can play a critical role in improving breast and cervical cancer treatment management. 相似文献
16.
21世纪单细胞分析发展 总被引:2,自引:0,他引:2
细胞是生物体的形态结构和生命活动的基本单位。了解生物体生命活动的规律 ,必须以研究细胞为基础 ,探索细胞的生命活动 ,掌握和控制生、老、病、死的规律 ,造福于人。 目前细胞研究已经从细胞整体 (单细胞 )深入到亚细胞 (局部细胞质、细胞膜、囊泡 )和分子水平 (DNA等生物大分子及单分子 )。因此 ,单细胞分析向分析化学提出了严峻的挑战 ,也带来众多机遇。由于细胞极小 (一般直径 7~ 10 0 μm) ,样品量很少 (体积fL~pL) ,胞内组分十分复杂 (最简单的红血球细胞含蛋白质上千种 ) ,胞内生化反应速度快 (ms~s级 ) ,因此 ,单细胞分析… 相似文献
17.
Nanoscale Biodegradable Organic–Inorganic Hybrids for Efficient Cell Penetration and Drug Delivery 下载免费PDF全文
Sebastian Hörner Sascha Knauer Christina Uth Marina Jöst Dr. Volker Schmidts Dr. Holm Frauendorf Prof. Dr. Christina Marie Thiele Dr. Olga Avrutina Prof. Dr. Harald Kolmar 《Angewandte Chemie (International ed. in English)》2016,55(47):14842-14846
We report a comprehensive study on novel, highly efficient, and biodegradable hybrid molecular transporters. To this end, we designed a series of cell‐penetrating, cube‐octameric silsesquioxanes (COSS), and investigated cellular uptake by confocal microscopy and flow cytometry. A COSS with dense spatial arrangement of guanidinium groups displayed fast uptake kinetics and cell permeation at nanomolar concentrations in living HeLa cells. Efficient uptake was also observed in bacteria, yeasts, and archaea. The COSS‐based carrier was significantly more potent than cell‐penetrating peptides (CPPs) and displayed low toxicity. It efficiently delivered a covalently attached cytotoxic drug, doxorubicin, to living tumor cells. As the uptake of fluorescently labeled carrier remained in the presence of serum, the system could be considered particularly attractive for the in vivo delivery of therapeutics. 相似文献
18.
近半个多世纪以来生命科学取得了非凡的进展, 从DNA双螺旋结构的提出, 到第一个酶晶体结构的被解析, 都得益于像X射线衍射、核磁共振、质谱这样的物理化学工具的发展. 如今, 在深入细致地定量研究生物活体系统中我们正面临新的挑战, 例如:了解酶及其他大分子复合物在体内是如何实时工作的, 它们在分子数很少时是怎样工作的, 在活细胞中大分子复合物是如何协调工作的, 以及不同的基因在活细胞中分子数很少的情况下是如何实现表达和不表达的等等. 近十多年来, 单分子成像, 超高分辨率显微镜和单分子操纵技术在世界范围内被广泛地运用于生物医学研究, 对生物化学和分子生物学的发展产生着深远的影响, 因为运用这些单分子、超高分辨技术, 使很多如上述的令人感兴趣的生物学问题实现了单分子层面上的研究和理解. 本文拟就近年来相关的物理化学方法特别是单分子方法和技术在生物医学中的应用做一个简要介绍. 相似文献
19.
Daniel Yuan Qiang Wong Wendy Wei Fang Ong Prof. Wee Han Ang 《Angewandte Chemie (International ed. in English)》2015,54(22):6483-6487
There is compelling evidence suggesting that the immune‐modulating effects of many conventional chemotherapeutics, including platinum‐based agents, play a crucial role in achieving clinical response. One way in which chemotherapeutics can engage a tumor‐specific immune response is by triggering an immunogenic mode of tumor cell death (ICD), which then acts as an “anticancer vaccine”. In spite of being a mainstay of chemotherapy, there has not been a systematic attempt to screen both existing and upcoming Pt agents for their ICD ability. A library of chemotherapeutically active Pt agents was evaluated in an in vitro phagocytosis assay, and no correlation between cytotoxicity and phagocytosis was observed. A PtII N‐heterocyclic carbene complex was found to display the characteristic hallmarks of a type II ICD inducer, namely focused oxidative endoplasmic reticulum (ER) stress, calreticulin exposure, and both HMGB1 and ATP release, and thus identified as the first small‐molecule immuno‐chemotherapeutic agent. 相似文献
20.
Yuanyuan Yuan Yiyao Wang Huiling Huang Shuiliang Tao Jinsheng Huang 《Macromolecular bioscience》2023,23(4):2200529
Successful clinical application of siRNA to liver-associated diseases reinvigorates the RNAi therapeutics and delivery vectors, especially for anticancer combination therapy. Fine tuning of copolymer-based assembly configuration is highly important for a desirable synergistic cancer cell-killing effect via the codelivery of chemotherapeutic drug and siRNA. Herein, an amphiphilic triblock copolymer methoxyl poly(ethylene glycol)-block-poly(L-lysine)-block-poly(2-(diisopropyl amino)ethyl methacrylate) (abbreviated as mPEG-PLys-PDPA or PLD) consisting of a hydrophilic diblock mPEG-PLys and a hydrophobic block PDPA is synthesized. Three distinct assemblies (i.e., nanosized micelle, nanosized polymersome, and microparticle) are acquired, along with the increase in PDPA block length. Furthermore, the as-obtained polymersome can efficiently codeliver doxorubicin hydrochloride (DOX) as a hydrophilic chemotherapeutic model and siRNA against ADP-ribosylation factor 6 (siArf6) as an siRNA model into cancer cell via lysosomal pH-triggered payload release. PC-3 prostate cell is synergistically killed by the DOX- and siArf6-coloading polymersome (namely PLD@DOX/siArf6). PLD@DOX/siArf6 may serve as a robust nanomedicine for anticancer therapy. 相似文献