首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
任益充  范洪义 《物理学报》2016,65(11):110301-110301
采用Ket-Bra纠缠态方法求解主方程, 研究了具有含时外场情况下单qubit和无相互作用的两qubit与热库耦合时的量子退相干、退纠缠现象. 对两qubit情形, 我们以共生纠缠度(concurrence)作为纠缠度量, 研究了其纠缠动力学演化过程. 研究表明即使系统内部不存在直接、间接的相互作用, 施加含时外场也能引起纠缠的震荡和复活, 这为通过施加控制外场抑制开放系统的退相干、退纠缠过程提供了理论支持.  相似文献   

2.
任益充  范洪义 《物理学报》2016,65(3):30301-030301
提出了研究原子演化的Ket-Bra纠缠态方法,并用此方法给出了原子主方程的Kraus算符形式的解.在得到此新解后,发现它和激光通道主方程的解形式相似,表现了光场算符a,a~(+)与原子算符σ_-,σ_+之间具有某种超对称性.通过进一步的探讨,寻找到了Pauli算符的多种Bose表示.  相似文献   

3.
Summary In this paper we formualte a master equation approach describing a D+T thermonuclear plasma in a lumped phase space. From the first moments of this master equation and performing the pass to the continuous limit the evolution equations for the expected phase space ion densities emerge. Also we have obtained the evolution equations of the equal time correlation and covariance functions. Finally we have deduced the hydrodynamic equations that arise from a master equation approach.  相似文献   

4.
I review the resummation formalism for organizing large logarithms in perturbative expansion of collinear subprocesses through the variation of Wilson lines off the light cone. A master equation is derived, which involves the evolution kernel resulting from this variation. It is then demonstrated that all the known single- and double-logarithm summations for a parton distribution function or a transverse-momentum-dependent parton distribution can be reproduced from the master equation by applying appropriate soft-gluon approximations to the evolution kernel. Moreover, jet substructures, information which is crucial for particle identification at the Large Hadron Collider and usually acquired from event generators, can also be calculated in this formalism.  相似文献   

5.
Recently increasing interests are attracted in the physics of controlled arrays of nonlinear cavity resonators because of the rapid experimental progress achieved in cavity and circuit quantum electrodynamics (QED). For a driven-dissipative two-dimentional planar C-QED array, standard Markov master equation is generally used to study the dynamics of this system. However, when in the case that the on-site photon-photon interaction enters strong correlation regime, standard Markov master equation may lead to incorrect results. In this paper we study the non-equilibrium dynamics of a two-dimentional C-QED array, which is homogeneously pumped by an external pulse, at the same time dissipation exits. We study the evolution of the average photon number of a single cavity by deriving a modified master equation to. In comparison with the standard master equation, the numerical result obtained by our newly derived master equation shows significant difference for the non-equilibrium dynamics of the system.  相似文献   

6.
In this work, we study an inverse dynamical problem for a bipartite quantum system governed by the time local master equation: to find the class of generators which give rise to a certain time evolution with the constraint of fixed reduced states (marginals). The compatibility of such choice with a global unitary evolution is considered. For the nonunitary case, we propose a systematic method to reconstruct examples of master equations and address them to different physical scenarios.  相似文献   

7.
8.
We present a method of treating the interaction of a single three-level ion with two laser beams. The idea is to apply a unitary transformation such that the exact transformed Hamiltonian has one of the three levels decoupled for all values of the detunings. When one takes into account damping, the evolution of the system is governed by a master equation usually obtained via adiabatic approximation under the assumption of far-detuned lasers. To go around the drawbacks of this technique, we use the same unitary transformation to get an effective master equation.  相似文献   

9.
The paper reexamines the treatment of irreversible quantum systems by master equations. Shortcomings of the conventional theory of quantum Markov processes pointed out by Talkner are analyzed. It is shown that a frequently used quantum regression hypothesis is not correct, in general. A new generalized master equation determining the relaxation to equilibrium is derived by means of time-dependent projection operator techniques. It is shown that this master equation also determines the time evolution of equilibrium correlations and response functions. The Markovian approximation is discussed, and a new type of Markovian limit, the Brownian motion limit, is introduced besides the weak coupling limit. The shortcomings of the conventional approach are resolved by deriving new formulae for the time evolution of the correlation and response functions of a quantum Markov process. The symmetries of the process are emphasized, and it is shown how the fluctuation-dissipation theorem and the detailed balance symmetry emerge from the master equation approach.  相似文献   

10.
We show that a dissipative current component is present in the dynamics generated by a Liouville-master equation, in addition to the usual component associated with Hamiltonian evolution. The dissipative component originates from coarse graining in time, implicit in a master equation, and needs to be included to preserve current continuity. We derive an explicit expression for the dissipative current in the context of the Markov approximation. Finally, we illustrate our approach with a simple numerical example, in which a quantum particle is coupled to a harmonic phonon bath and dissipation is described by the Pauli master equation.  相似文献   

11.
A master equation, for the time evolution of the quasi-probability density function of spin orientations in the phase space representation of the polar and azimuthal angles is derived for a uniaxial spin system subject to a magnetic field parallel to the axis of symmetry. This equation is obtained from the reduced density matrix evolution equation (assuming that the spin-bath coupling is weak and that the correlation time of the bath is so short that the stochastic process resulting from it is Markovian) by expressing it in terms of the inverse Wigner-Stratonovich transformation and evaluating the various commutators via the properties of polarization operators and spherical harmonics. The properties of this phase space master equation, resembling the Fokker-Planck equation, are investigated, leading to a finite series (in terms of the spherical harmonics) for its stationary solution, which is the equilibrium quasi-probability density function of spin “orientations” corresponding to the canonical density matrix and which may be expressed in closed form for a given spin number. Moreover, in the large spin limit, the master equation transforms to the classical Fokker-Planck equation describing the magnetization dynamics of a uniaxial paramagnet.  相似文献   

12.
We consider thermalisation and spontaneous decay of a two-level atom beyond the Markovian approximation. While the standard elimination of the continuum of radiation modes results in exponential decay represented by a Lindblad equation of motion, we use a simple toy model that takes into account the finite relaxation rate of the environment and present an exact non-Markovian master equation of the Nakajima-Zwanzig form. Because the exact derivation of non-Markovian equations has proved very difficult for all more realistic (and hence much more complicated) models, we analyze the master equation obtained and also discuss difficulties that are likely to arise with non-Markovian evolution operators.  相似文献   

13.
In this work, we study the behaviour of two weakly coupled quantum systems, described by a separable density operator; one of them is a single oscillator, representing a microscopic system, while the other is a set of oscillators which perform the role of a reservoir in thermal equilibrium. From the Liouville-Von Neumann equation for the reduced density operator, we devise the master equation that governs the evolution of the microscopic system, incorporating the effects of temperature via Thermofield Dynamics formalism by suitably redefining the vacuum of the macroscopic system. As applications, we initially investigate the behaviour of a Fermi oscillator in the presence of a heat bath consisting of a set of Fermi oscillators and that of an atomic two-level system interacting with a scalar radiation field, considered as a reservoir, by constructing the corresponding master equation which governs the time evolution of both sub-systems at finite temperature. Finally, we calculate the energy variation rates for the atom and the field, as well as the atomic population levels, both in the inertial case and at constant proper acceleration, considering the two-level system as a prototype of an Unruh detector, for admissible couplings of the radiation field.  相似文献   

14.
非平衡系统Master方程的稳定性   总被引:1,自引:0,他引:1       下载免费PDF全文
针对非平衡统计中出现的多元线性Master方程,利用“熵产生”和“剩余熵产生”的概念讨论了Master方程在线性平衡区和非线性远离平衡区的稳定性问题。从而得到与Prigo-gine宏观热力学理论中一致的结果。此外还提出了Master方程所决定的“概率流”的概念,给出了概率流分解的具体解析表达式。 关键词:  相似文献   

15.
Using thermal entangled state representation,we solve the master equation of a diffusive anharmonic oscillator(AHO) to obtain the exact time evolution formula for the density operator in the infinitive operator-sum representation.We present a new evolution formula of the Wigner function(WF) for any initial state of the diffusive AHO by converting the WF calculation into an overlap between two pure states in an enlarged Fock space.It is found that this formula is very convenient in investigating the WF’s evolution of any known initial state.As applications,this formula is used to obtain the evolution of the WF for a coherent state and the evolution of the photon-number distribution of diffusive AHOs.  相似文献   

16.
孟祥国  王继锁  梁宝龙 《中国物理 B》2013,22(3):30307-030307
Using the thermal entangled state representation, we solve the master equation of a diffusive anharmonic oscillator (AHO) to obtain the exact time evolution formula for the density operator in the infinitive operator-sum representation. We present a new evolution formula of the Wigner function (WF) for any initial state of the diffusive AHO by converting the calculation of the WF to an overlap between two pure states in an enlarged Fock space. It is found that this formula brings us much convenience to investigate the WF's evolution of any known initial state. As applications, this formula is used to obtain the evolution of the WF for a coherent state and the evolution of the photon-number distribution of the diffusive AHO.  相似文献   

17.
In nanomechanical QED system,consisting of a charge qubit and a nanomechanical resonator with intrinsic nonlinearity,we study the temporal behavior of Rabi oscillation in the nonlinear Jaynes-Cummings model.Using microscopic master equation approach,we solve time evolution of the density operator describing this model.Also,the probability of excited state of charge qubit is calculated.These analytic calculations show how nonlinearity parameter and decay rates of two different excited states of the qubit-resonator system affect time-oscillating and decaying of Rabi oscillation.  相似文献   

18.
Yi Gao  Shi-Jie Xiong 《Physics letters. A》2008,372(25):4630-4633
We investigate a model of quantum register composed of N qubits coupling with itinerant electrons by adopting the Born-Markov master equation. Decoherence induced by this coupling is studied for various initial states. By solving the master equation for N=4 with the numerical integration, we obtain time evolution of fidelity and linear entropy of the register. The decoherence rate of this model is proportional to 2|J| with J being the exchange coupling strength of electrons and qubits. We also investigate the decoherence free subspace which provides a possible routine of applications in quantum computation.  相似文献   

19.
In this paper, we analyze the classical capacity of the generalized Pauli channels generated via memory kernel master equations. For suitable engineering of the kernel parameters, evolution with non-local noise effects can produce dynamical maps with a higher capacity than a purely Markovian evolution. We provide instructive examples for qubit and qutrit evolution. Interestingly, similar behavior is not observed when analyzing time-local master equations.  相似文献   

20.
I characterize good clocks, which are naturally subject to fluctuations, in statistical terms, obtain the master equation that governs the evolution of quantum systems according to these clocks, and find its general solution. This master equation is diffusive and produces loss of coherence. Moreover, real clocks can be described in terms of effective interactions that are nonlocal in time. Alternatively, they can be modeled by an effective thermal bath coupled to the system. I also study some aspects concerning the evolution of quantum low-energy fields in a foamlike spacetime, with involved topology at the Planck scale but with a smooth metric structure at large length scales. This foamlike structure of spacetime may show up in low-energy physics through loss of quantum coherence and mode-dependent energy shifts, for instance, which might be observable. Spacetime foam introduces nonlocal interactions that can be modeled by a quantum bath, and low-energy fields evolve according to a master equation that displays such effects. These evolution laws are similar to those for quantum mechanical systems evolving according to good nonideal clocks, although the underlying Hamiltonian structure in this case establishes some differences among both scenarios.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号