首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Let G be a reductive algebraic group over an algebraically closed field of characteristic zero, and let \(\mathfrak{h}\) be an algebraic subalgebra of the tangent Lie algebra \(\mathfrak{g}\) of G. We find all subalgebras \(\mathfrak{h}\) that have no nontrivial characters and whose centralizers \(\mathfrak{U}(\mathfrak{g})^\mathfrak{h} \) and \(P(\mathfrak{g})^\mathfrak{h} \) in the universal enveloping algebra \(\mathfrak{U}(\mathfrak{g})\) and in the associated graded algebra \(P(\mathfrak{g})\), respectively, are commutative. For all these subalgebras, we prove that \(\mathfrak{U}(\mathfrak{g})^\mathfrak{h} = \mathfrak{U}(\mathfrak{h})^\mathfrak{h} \otimes \mathfrak{U}(\mathfrak{g})^\mathfrak{g} \) and \(P(\mathfrak{g})^\mathfrak{h} = P(\mathfrak{h})^\mathfrak{h} \otimes P(\mathfrak{g})^\mathfrak{g} \). Furthermore, we obtain a criterion for the commutativity of \(\mathfrak{U}(\mathfrak{g})^\mathfrak{h} \) in terms of representation theory.  相似文献   

2.
Using \( \mathfrak{G} \)(d, k) to denote the singular series for primes in arithmetic progressions and using the word “tail” to denote the difference of \( \mathfrak{G} \)(d, k) and its partial sums, we establish some asymptotic formulas for weighted sums of the square of the tail and so give more information on the singular series \( \mathfrak{G} \)(d, k).  相似文献   

3.
We give a criterion for the annihilator in U(\( \mathfrak{s}\mathfrak{l} \)(∞)) of a simple highest weight \( \mathfrak{s}\mathfrak{l} \)(∞)-module to be nonzero. As a consequence we show that, in contrast with the case of \( \mathfrak{s}\mathfrak{l} \)(n), the annihilator in U(\( \mathfrak{s}\mathfrak{l} \)(∞)) of any simple highest weight \( \mathfrak{s}\mathfrak{l} \)(∞)-module is integrable, i.e., coincides with the annihilator of an integrable \( \mathfrak{s}\mathfrak{l} \)(∞)-module. Furthermore, we define the class of ideal Borel subalgebras of \( \mathfrak{s}\mathfrak{l} \)(∞), and prove that any prime integrable ideal in U(\( \mathfrak{s}\mathfrak{l} \)(∞)) is the annihilator of a simple \( \mathfrak{b} \) 0-highest weight module, where \( \mathfrak{b} \) 0 is any fixed ideal Borel subalgebra of \( \mathfrak{s}\mathfrak{l} \)(∞). This latter result is an analogue of the celebrated Duoflo Theorem for primitive ideals.  相似文献   

4.
5.
We investigate homogeneous geodesics in a class of homogeneous spaces called M-spaces, which are defined as follows. Let G / K be a generalized flag manifold with \(K=C(S)=S\times K_1\), where S is a torus in a compact simple Lie group G and \(K_1\) is the semisimple part of K. Then, the associated M-space is the homogeneous space \(G/K_1\). These spaces were introduced and studied by H. C. Wang in 1954. We prove that for various classes of M-spaces the only g.o. metric is the standard metric. For other classes of M-spaces we give either necessary, or necessary and sufficient conditions, so that a G-invariant metric on \(G/K_1\) is a g.o. metric. The analysis is based on properties of the isotropy representation \(\mathfrak {m}=\mathfrak {m}_1\oplus \cdots \oplus \mathfrak {m}_s\) of the flag manifold G / K [as \({{\mathrm{Ad}}}(K)\)-modules].  相似文献   

6.
7.
We discuss the proof of Kazhdan and Lusztig of the equivalence of the Drinfeld category \({\mathcal D}({\mathfrak g},\hbar)\) of \({\mathfrak g}\)-modules and the category of finite dimensional \(U_q{\mathfrak g}\)-modules, \(q=e^{\pi i\hbar}\), for \(\hbar\in{\mathbb C}\setminus{\mathbb Q}^*\). Aiming at operator algebraists the result is formulated as the existence for each \(\hbar\in i{\mathbb R}\) of a normalized unitary 2-cochain \({\mathcal F}\) on the dual \(\hat G\) of a compact simple Lie group G such that the convolution algebra of G with the coproduct twisted by \({\mathcal F}\) is *-isomorphic to the convolution algebra of the q-deformation G q of G, while the coboundary of \({\mathcal F}^{-1}\) coincides with Drinfeld’s KZ-associator defined via monodromy of the Knizhnik–Zamolodchikov equations.  相似文献   

8.
For a local number field K with the ring of integers \( {\mathcal{O}_K} \), the residue field \( {\mathbb{F}_q} \), and uniformizing π, we consider the Lubin–Tate tower \( {K_\pi } = \bigcap\limits_{n \geqslant 0} {{K_n}} \), where K n = K(π n ), f(π0) = 0, and f(π n +1) = π n . Here f(X) defines the endomorphism [π] of the Lubin–Tate group. If q ≠ 2, then for any formal power series \( g(X) \in {\mathcal{O}_K}\left[ {\left[ X \right]} \right] \) the following equality holds: \( \sum\limits_{n = 0}^\infty {{\text{SP}}{{{K_n}} \mathord{\left/{\vphantom {{{K_n}} K}} \right.} K}} g\left( {{\pi_n}} \right) = - g(0) \). One has a similar equality in the case q = 2.  相似文献   

9.
The optimal channel assignment is an important optimization problem with applications in optical networks. This problem was formulated to the L(p, 1)-labeling of graphs by Griggs and Yeh (SIAM J Discrete Math 5:586–595, 1992). A k-L(p, 1)-labeling of a graph G is a function \(f:V(G)\rightarrow \{0,1,2,\ldots ,k\}\) such that \(|f(u)-f(v)|\ge p\) if \(d(u,v)=1\) and \(|f(u)-f(v)|\ge 1\) if \(d(u,v)=2\), where d(uv) is the distance between the two vertices u and v in the graph. Denote \(\lambda _{p,1}^l(G)= \min \{k \mid G\) has a list k-L(p, 1)-labeling\(\}\). In this paper we show upper bounds \(\lambda _{1,1}^l(G)\le \Delta +9\) and \(\lambda _{2,1}^l(G)\le \max \{\Delta +15,29\}\) for planar graphs G without 4- and 6-cycles, where \(\Delta \) is the maximum vertex degree of G. Our proofs are constructive, which can be turned to a labeling (channel assignment) method to reach the upper bounds.  相似文献   

10.
We consider the Anderson polymer partition function
$$\begin{aligned} u(t):=\mathbb {E}^X\left[ e^{\int _0^t \mathrm {d}B^{X(s)}_s}\right] \,, \end{aligned}$$
where \(\{B^{x}_t\,;\, t\ge 0\}_{x\in \mathbb {Z}^d}\) is a family of independent fractional Brownian motions all with Hurst parameter \(H\in (0,1)\), and \(\{X(t)\}_{t\in \mathbb {R}^{\ge 0}}\) is a continuous-time simple symmetric random walk on \(\mathbb {Z}^d\) with jump rate \(\kappa \) and started from the origin. \(\mathbb {E}^X\) is the expectation with respect to this random walk. We prove that when \(H\le 1/2\), the function u(t) almost surely grows asymptotically like \(e^{\lambda t}\), where \(\lambda >0\) is a deterministic number. More precisely, we show that as t approaches \(+\infty \), the expression \(\{\frac{1}{t}\log u(t)\}_{t\in \mathbb {R}^{>0}}\) converges both almost surely and in the \(\hbox {L}^1\) sense to some positive deterministic number \(\lambda \). For \(H>1/2\), we first show that \(\lim _{t\rightarrow \infty } \frac{1}{t}\log u(t)\) exists both almost surely and in the \(\hbox {L}^1\) sense and equals a strictly positive deterministic number (possibly \(+\infty \)); hence, almost surely u(t) grows asymptotically at least like \(e^{\alpha t}\) for some deterministic constant \(\alpha >0\). On the other hand, we also show that almost surely and in the \(\hbox {L}^1\) sense, \(\limsup _{t\rightarrow \infty } \frac{1}{t\sqrt{\log t}}\log u(t)\) is a deterministic finite real number (possibly zero), hence proving that almost surely u(t) grows asymptotically at most like \(e^{\beta t\sqrt{\log t}}\) for some deterministic positive constant \(\beta \). Finally, for \(H>1/2\) when \(\mathbb {Z}^d\) is replaced by a circle endowed with a Hölder continuous covariance function, we show that \(\limsup _{t\rightarrow \infty } \frac{1}{t}\log u(t)\) is a deterministic finite positive real number, hence proving that almost surely u(t) grows asymptotically at most like \(e^{c t}\) for some deterministic positive constant c.
  相似文献   

11.
Let \(\mathfrak {M}\) be a von Neumann algebra, and let \(\mathfrak {T}:\mathfrak {M} \rightarrow \mathfrak {M}\) be a bounded linear map satisfying \(\mathfrak {T}(P^{2}) = \mathfrak {T}(P)P + \Psi (P,P)\) for each projection P of \(\mathfrak {M}\), where \(\Psi :\mathfrak {M} \times \mathfrak {M} \rightarrow \mathfrak {M}\) is a bi-linear map. If \(\Psi \) is a bounded l-semi Hochschild 2-cocycle, then \(\mathfrak {T}\) is a left centralizer associated with \(\Psi \). By applying this conclusion, we offer a characterization of left \(\sigma \)-centralizers, generalized derivations and generalized \(\sigma \)-derivations on von Neumann algebras. Moreover, it is proved that if \(\mathfrak {M}\) is a commutative von Neumann algebra and \(\sigma :\mathfrak {M} \rightarrow \mathfrak {M}\) is an endomorphism, then every bi-\(\sigma \)-derivation \(D:\mathfrak {M} \times \mathfrak {M} \rightarrow \mathfrak {M}\) is identically zero.  相似文献   

12.
For nonnegative integers qnd, let \(A_q(n,d)\) denote the maximum cardinality of a code of length n over an alphabet [q] with q letters and with minimum distance at least d. We consider the following upper bound on \(A_q(n,d)\). For any k, let \(\mathcal{C}_k\) be the collection of codes of cardinality at most k. Then \(A_q(n,d)\) is at most the maximum value of \(\sum _{v\in [q]^n}x(\{v\})\), where x is a function \(\mathcal{C}_4\rightarrow {\mathbb {R}}_+\) such that \(x(\emptyset )=1\) and \(x(C)=\!0\) if C has minimum distance less than d, and such that the \(\mathcal{C}_2\times \mathcal{C}_2\) matrix \((x(C\cup C'))_{C,C'\in \mathcal{C}_2}\) is positive semidefinite. By the symmetry of the problem, we can apply representation theory to reduce the problem to a semidefinite programming problem with order bounded by a polynomial in n. It yields the new upper bounds \(A_4(6,3)\le 176\), \(A_4(7,3)\le 596\), \(A_4(7,4)\le 155\), \(A_5(7,4)\le 489\), and \(A_5(7,5)\le 87\).  相似文献   

13.
We are concerned with the existence of infinitely many solutions for the problem \(-\Delta u=|u|^{p-2}u+f\) in \(\Omega \), \(u=u_0\) on \(\partial \Omega \), where \(\Omega \) is a bounded domain in \(\mathbb {R}^N\), \(N\ge 3\). This can be seen as a perturbation of the problem with \(f=0\) and \(u_0=0\), which is odd in u. If \(\Omega \) is invariant with respect to a closed strict subgroup of O(N), then we prove infinite existence for all functions f and \(u_0\) in certain spaces of invariant functions for a larger range of exponents p than known before. In order to achieve this, we prove Lieb–Cwikel–Rosenbljum-type bounds for invariant potentials on \(\Omega \), employing improved Sobolev embeddings for spaces of invariant functions.  相似文献   

14.
We deal with Morrey spaces on bounded domains \(\Omega \) obtained by different approaches. In particular, we consider three settings \(\mathcal {M}_{u,p}(\Omega )\), \(\mathbb {M}_{u,p}(\Omega )\) and \(\mathfrak {M}_{u,p}(\Omega )\), where \(0<p\le u<\infty \), commonly used in the literature, and study their connections and diversities. Moreover, we determine the growth envelopes \(\mathfrak {E}_{\mathsf {G}}(\mathcal {M}_{u,p}(\Omega ))\) as well as \(\mathfrak {E}_{\mathsf {G}}(\mathfrak {M}_{u,p}(\Omega ))\), and obtain some applications in terms of optimal embeddings. Surprisingly, it turns out that the interplay between p and u in the sense of whether \(\frac{n}{u}\ge \frac{1}{p}\) or \(\frac{n}{u} < \frac{1}{p}\) plays a decisive role when it comes to the behaviour of these spaces.  相似文献   

15.
We identify minimal cases in which a power \(\mathfrak {m}^i\not =0\) of the maximal ideal of a local ring R is not Golod, i.e. the quotient ring \(R/\mathfrak {m}^i\) is not Golod. Complementary to a 2014 result by Rossi and ?ega, we prove that for a generic artinian Gorenstein local ring with \(\mathfrak {m}^4=0\ne \mathfrak {m}^3\), the quotient \(R/\mathfrak {m}^3\) is not Golod. This is provided that \(\mathfrak {m}\) is minimally generated by at least 3 elements. Indeed, we show that if \(\mathfrak {m}\) is 2-generated, then every power \(\mathfrak {m}^i\ne 0\) is Golod.  相似文献   

16.
For a fixed integer n, we study the question whether at least one of the numbers \(\mathfrak {R}X\omega ^k\), \(1\le k\le n\), is \(\varepsilon \)-close to an integer, for any possible value of \(X\in \mathbb {C}\), where \(\omega \) is a primitive nth root of unity. It turns out that there is always an X for which the above numbers are concentrated around \(1/2\,\mathrm{mod}\,1\). The shortest possible interval centered at 1 / 2 containing the fractional parts of all numbers \(\mathfrak {R}X\omega ^k\) depends only on the prime factors of n, rather than its magnitude. This is directly related to the so–called “pyjama” problem which was solved recently.  相似文献   

17.
Let G be a complete k-partite simple undirected graph with parts of sizes \(p_1\le p_2\cdots \le p_k\). Let \(P_j=\sum _{i=1}^jp_i\) for \(j=1,\ldots ,k\). It is conjectured that G has distance magic labeling if and only if \(\sum _{i=1}^{P_j} (n-i+1)\ge j{{n+1}\atopwithdelims (){2}}/k\) for all \(j=1,\ldots ,k\). The conjecture is proved for \(k=4\), extending earlier results for \(k=2,3\).  相似文献   

18.
The anti-Ramsey number, AR(nG), for a graph G and an integer \(n\ge |V(G)|\), is defined to be the minimal integer r such that in any edge-colouring of \(K_n\) by at least r colours there is a multicoloured copy of G, namely, a copy of G that each of its edges has a distinct colour. In this paper we determine, for large enough \(n,\, AR(n,L\cup tP_2)\) and \(AR(n,L\cup kP_3)\) for any large enough t and k, and a graph L satisfying some conditions. Consequently, we determine AR(nG), for large enough n, where G is \(P_3\cup tP_2\) for any \(t\ge 3,\, P_4\cup tP_2\) and \(C_3\cup tP_2\) for any \(t\ge 2,\, kP_3\) for any \(k\ge 3,\, tP_2\cup kP_3\) for any \(t\ge 1,\, k\ge 2\), and \(P_{t+1}\cup kP_3\) for any \(t\ge 3,\, k\ge 1\). Furthermore, we obtain upper and lower bounds for AR(nG), for large enough n, where G is \(P_{k+1}\cup tP_2\) and \(C_k\cup tP_2\) for any \(k\ge 4,\, t\ge 1\).  相似文献   

19.
Given a positive integer M and a real number \(q >1\), a q -expansion of a real number x is a sequence \((c_i)=c_1c_2\ldots \) with \((c_i) \in \{0,\ldots ,M\}^\infty \) such that
$$\begin{aligned} x=\sum _{i=1}^{\infty } c_iq^{-i}. \end{aligned}$$
It is well known that if \(q \in (1,M+1]\), then each \(x \in I_q:=\left[ 0,M/(q-1)\right] \) has a q-expansion. Let \(\mathcal {U}=\mathcal {U}(M)\) be the set of univoque bases \(q>1\) for which 1 has a unique q-expansion. The main object of this paper is to provide new characterizations of \(\mathcal {U}\) and to show that the Hausdorff dimension of the set of numbers \(x \in I_q\) with a unique q-expansion changes the most if q “crosses” a univoque base. Denote by \(\mathcal {B}_2=\mathcal {B}_2(M)\) the set of \(q \in (1,M+1]\) such that there exist numbers having precisely two distinct q-expansions. As a by-product of our results, we obtain an answer to a question of Sidorov (J Number Theory 129:741–754, 2009) and prove that
$$\begin{aligned} \dim _H(\mathcal {B}_2\cap (q',q'+\delta ))>0\quad \text {for any}\quad \delta >0, \end{aligned}$$
where \(q'=q'(M)\) is the Komornik–Loreti constant.
  相似文献   

20.
For a graph G, let S(G) be the Seidel matrix of G and \({\theta }_1(G),\ldots ,{\theta }_n(G)\) be the eigenvalues of S(G). The Seidel energy of G is defined as \(|{\theta }_1(G)|+\cdots +|{\theta }_n(G)|\). Willem Haemers conjectured that the Seidel energy of any graph with n vertices is at least \(2n-2\), the Seidel energy of the complete graph with n vertices. Motivated by this conjecture, we prove that for any \(\alpha \) with \(0<\alpha <2,|{\theta }_1(G)|^\alpha +\cdots +|{\theta }_n(G)|^\alpha \geqslant (n-1)^\alpha +n-1\) if and only if \(|\hbox {det}\,S(G)|\geqslant n-1\). This, in particular, implies the Haemers’ conjecture for all graphs G with \(|\hbox {det}\,S(G)|\geqslant n-1\). A computation on the fraction of graphs with \(|\hbox {det}\,S(G)|<n-1\) is reported. Motivated by that, we conjecture that almost all graphs G of order n satisfy \(|\hbox {det}\,S(G)|\geqslant n-1\). In connection with this conjecture, we note that almost all graphs of order n have a Seidel energy of order \(\Theta (n^{3/2})\). Finally, we prove that self-complementary graphs G of order \(n\equiv 1\pmod 4\) have \(\det S(G)=0\).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号