首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this paper, we present a computational method for solving 2D and 3D Poisson equations and biharmonic equations which based on the use of Haar wavelets. The highest derivative appearing in the differential equation is expanded into the Haar series, this approximation is integrated while the boundary conditions are incorporated by using integration constants. In 2D the first transform the spectral coefficients into the nodal variable values and then use Kronecker products to construct the approximations for derivatives over a tensor product grid of the horizontal and vertical blocks. Finally, solutions to four test problems are investigated.  相似文献   

2.
In this paper we present two new numerically stable methods based on Haar and Legendre wavelets for one- and two-dimensional parabolic partial differential equations (PPDEs). This work is the extension of the earlier work ,  and  from one- and two-dimensional boundary-value problems to one- and two- dimensional PPDEs. Two generic numerical algorithms are derived in two phases. In the first stage a numerical algorithm is derived by using Haar wavelets and then in the second stage Haar wavelets are replaced by Legendre wavelets in quest for better accuracy. In the proposed methods the time derivative is approximated by first order forward difference operator and space derivatives are approximated using Haar (Legendre) wavelets. Improved accuracy is obtained in the form of wavelets decomposition. The solution in this process is first obtained on a coarse grid and then refined towards higher accuracy in the high resolution space. Accuracy wise performance of the Legendre wavelets collocation method (LWCM) is better than the Haar wavelets collocation method (HWCM) for problems having smooth initial data or having no shock phenomena in the solution space. If sharp transitions exists in the solution space or if there is a discontinuity between initial and boundary conditions, LWCM loses its accuracy in such cases, whereas HWCM produces a stable solution in such cases as well. Contrary to the existing methods, the accuracy of both HWCM and LWCM do not degrade in case of Neumann’s boundary conditions. A distinctive feature of the proposed methods is its simple applicability for a variety of boundary conditions. Performances of both HWCM and LWCM are compared with the most recent methods reported in the literature. Numerical tests affirm better accuracy of the proposed methods for a range of benchmark problems.  相似文献   

3.
Based on collocation with Haar and Legendre wavelets, two efficient and new numerical methods are being proposed for the numerical solution of elliptic partial differential equations having oscillatory and non-oscillatory behavior. The present methods are developed in two stages. In the initial stage, they are developed for Haar wavelets. In order to obtain higher accuracy, Haar wavelets are replaced by Legendre wavelets at the second stage. A comparative analysis of the performance of Haar wavelets collocation method and Legendre wavelets collocation method is carried out. In addition to this, comparative studies of performance of Legendre wavelets collocation method and quadratic spline collocation method, and meshless methods and Sinc–Galerkin method are also done. The analysis indicates that there is a higher accuracy obtained by Legendre wavelets decomposition, which is in the form of a multi-resolution analysis of the function. The solution is first found on the coarse grid points, and then it is refined by obtaining higher accuracy with help of increasing the level of wavelets. The accurate implementation of the classical numerical methods on Neumann’s boundary conditions has been found to involve some difficulty. It has been shown here that the present methods can be easily implemented on Neumann’s boundary conditions and the results obtained are accurate; the present methods, thus, have a clear advantage over the classical numerical methods. A distinct feature of the proposed methods is their simple applicability for a variety of boundary conditions. Numerical order of convergence of the proposed methods is calculated. The results of numerical tests show better accuracy of the proposed method based on Legendre wavelets for a variety of benchmark problems.  相似文献   

4.
This study proposes Haar wavelet (HW) approximation method for solving magnetohydrodynamic flow equations in a rectangular duct in presence of transverse external oblique magnetic field. The method is based on approximating the truncated double Haar wavelets series. Numerical solution of velocity and induced magnetic field is obtained for steady-state, fully developed, incompressible flow for a conducting fluid inside the duct. The calculations show that the accuracy of the Haar wavelet solutions is quite good even in the case of a small number of grid points. The HW approximation method may be used in a wide variety of high-order linear partial differential equations. Application of the HW approximation method showed that it is reliable, simple, fast, least computation at costs and flexible.  相似文献   

5.
In this paper, we develop an accurate and efficient Haar wavelet solution of Fisher’s equation, a prototypical reaction-diffusion equation. The solutions of Fisher’s equation are characterized by propagating fronts that can be very steep for large values of the reaction rate coefficient. There is an ongoing effort to better adapt Haar wavelet methods to the solution of differential equations with solutions that resemble shock waves or fronts typical of hyperbolic partial differential equations. Moreover the use of Haar wavelets is found to be accurate, simple, fast, flexible, convenient, small computation costs and computationally attractive.  相似文献   

6.
Solving fractional integral equations by the Haar wavelet method   总被引:1,自引:0,他引:1  
Haar wavelets for the solution of fractional integral equations are applied. Fractional Volterra and Fredholm integral equations are considered. The proposed method also is used for analysing fractional harmonic vibrations. The efficiency of the method is demonstrated by three numerical examples.  相似文献   

7.
This paper presents a computational method for solving stochastic Ito-Volterra integral equations. First, Haar wavelets and their properties are employed to derive a general procedure for forming the stochastic operational matrix of Haar wavelets. Then, application of this stochastic operational matrix for solving stochastic Ito-Volterra integral equations is explained. The convergence and error analysis of the proposed method are investigated. Finally, the efficiency of the presented method is confirmed by some examples.  相似文献   

8.
In this work, we present a computational method for solving eigenvalue problems of high-order ordinary differential equations which based on the use of Haar wavelets. The variable and their derivatives in the governing equations are represented by Haar function and their integral. The first transform the spectral coefficients into the nodal variable values. The second, solve the obtained system of algebraic equation. The efficiency of the method is demonstrated by four numerical examples.  相似文献   

9.
The Haar wavelet based discretization method for solving differential equations is developed. Nonlinear Burgers equation is considered as a test problem. Both, strong and weak formulations based approaches are discussed. The discretization scheme proposed is based on the weak formulation. An attempt is made to combine the advantages of the FEM and Haar wavelets. The obtained numerical results have been validated against a closed form analytical solution as well as FEM results. Good agreement with the exact solution has been observed.  相似文献   

10.
In this work, we present a computational method for solving nonlinear Fredholm integral equations of the second kind which is based on the use of Haar wavelets. Error analysis is worked out that shows efficiency of the method. Finally, we also give some numerical examples.  相似文献   

11.
王国秋  全宏跃 《计算数学》2009,31(1):99-110
我们提出了最优多进Haar小波的概念,证明了其存在性和唯一性,给出了最优多进Haar小波构造的通用方法,并证明了最优多进Haar小波具有线性相位,在消失矩意义下,我们所得到的最优多进Haar小波优于离散余弦变换.同时,我们用图像缩编码的方法验证了最优多进Haar小波的性能优于离散余弦变换的,新的变换可以化为精确的小整数运算,能非常廉价地用集成电路实现,该变换的实用意义在于给图像和视频压缩提供了一个更好的选择.  相似文献   

12.
We introduce a multigrid algorithm for the solution of a second order elliptic equation in three dimensions. For the approximation of the solution we use a partially ordered hierarchy of finite-volume discretisations. We show that there is a relation with semicoarsening and approximation by more-dimensional Haar wavelets. By taking a proper subset of all possible meshes in the hierarchy, a sparse grid finite-volume discretisation can be constructed.The multigrid algorithm consists of a simple damped point-Jacobi relaxation as the smoothing procedure, while the coarse grid correction is made by interpolation from several coarser grid levels.The combination of sparse grids and multigrid with semi-coarsening leads to a relatively small number of degrees of freedom,N, to obtain an accurate approximation, together with anO(N) method for the solution. The algorithm is symmetric with respect to the three coordinate directions and it is fit for combination with adaptive techniques.To analyse the convergence of the multigrid algorithm we develop the necessary Fourier analysis tools. All techniques, designed for 3D-problems, can also be applied for the 2D case, and — for simplicity — we apply the tools to study the convergence behaviour for the anisotropic Poisson equation for this 2D case.  相似文献   

13.
Biharmonic equations have many applications, especially in fluid and solid mechanics, but is difficult to solve due to the fourth order derivatives in the differential equation. In this paper a fast second order accurate algorithm based on a finite difference discretization and a Cartesian grid is developed for two dimensional biharmonic equations on irregular domains with essential boundary conditions. The irregular domain is embedded into a rectangular region and the biharmonic equation is decoupled to two Poisson equations. An auxiliary unknown quantity Δu along the boundary is introduced so that fast Poisson solvers on irregular domains can be used. Non-trivial numerical examples show the efficiency of the proposed method. The number of iterations of the method is independent of the mesh size. Another key to the method is a new interpolation scheme to evaluate the residual of the Schur complement system. The new biharmonic solver has been applied to solve the incompressible Stokes flow on an irregular domain.   相似文献   

14.
The state analysis and optimal control of time-varying discrete systems via Haar wavelets are the main tasks of this paper. First, we introduce the definition of discrete Haar wavelets. Then, a comparison between Haar wavelets and other orthogonal functions is given. Based upon some useful properties of the Haar wavelets, a special product matrix and a related coefficient matrix are proposed; also, a shift matrix and a summation matrix are derived. These matrices are very effective in solving our problems. The local property of the Haar wavelets is applied to shorten the calculation procedures.  相似文献   

15.
《Applied Mathematical Modelling》2014,38(21-22):4958-4971
In this paper, we present a numerical scheme using uniform Haar wavelet approximation and quasilinearization process for solving some nonlinear oscillator equations. In our proposed work, quasilinearization technique is first applied through Haar wavelets to convert a nonlinear differential equation into a set of linear algebraic equations. Finally, to demonstrate the validity of the proposed method, it has been applied on three type of nonlinear oscillators namely Duffing, Van der Pol, and Duffing–van der Pol. The obtained responses are presented graphically and compared with available numerical and analytical solutions found in the literature. The main advantage of uniform Haar wavelet series with quasilinearization process is that it captures the behavior of the nonlinear oscillators without any iteration. The numerical problems are considered with force and without force to check the efficiency and simple applicability of method on nonlinear oscillator problems.  相似文献   

16.
In this paper, an exact upper bound is presented through the error analysis to solve the numerical solution of fractional differential equation with variable coefficient. The fractional differential equation is solved by using Haar wavelets. From the exact upper bound, we can draw a conclusion easily that the method is convergent. Finally, we also give some numerical examples to demonstrate the validity and applicability of the method.  相似文献   

17.
In this article, Haar wavelets have been employed to obtain solutions of boundary value problems for linear fractional partial differential equations. The differential equations are reduced to Sylvester matrix equations. The algorithm is novel in the sense that it effectively incorporates the aperiodic boundary conditions. Several examples with numerical simulations are provided to illustrate the simplicity and effectiveness of the method.  相似文献   

18.
求解对流扩散方程的Haar小波方法   总被引:2,自引:0,他引:2  
石智  邓丽媛 《应用数学》2008,21(1):98-104
本文用Haar小波求解对流扩散方程,将满足初始和边界条件的常系数偏微分方程简化为较简单的代数方程组进行求解.实例说明了这种方法具有收敛速度快和计算容易的特点,同时又避免了用Daubechies小波求解微分方程需要计算相关系数的麻烦.本文所使用的方法可以求解一般的微(积)分方程.  相似文献   

19.
利用有理化Haar小波性质和方法,建立了一类非线性微分方程组在任意区间[a,b)的求解算法.基于该算法,运用计算机代数系统Maple,给出了求解非线性微分方程组的程序.并运用此程序给出了一类微分方程组的计算实例,从数值模拟来看可以达到较高的精度,并对方程组的动力学行为给出较好的描述.  相似文献   

20.
In this paper, we present a bipolar hydrodynamic model from semiconductor devices and plasmas, which takes the form of bipolar isentropic Euler–Poisson with electric field and frictional damping added to the momentum equations. We firstly prove the existence of the stationary solutions. Next, we present the global existence and the asymptotic behavior of smooth solutions to the initial boundary value problem for a one-dimensional case in a bounded domain. The result is shown by an elementary energy method. Compared with the corresponding initial data case, we find that the asymptotic state is the stationary solution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号