首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Let \({\mathfrak{M}}\) be a Hilbert C*-module on a C*-algebra \({\mathfrak{A}}\) and let \({End_\mathfrak{A}(\mathfrak{M})}\) be the algebra of all operators on \({\mathfrak{M}}\). In this paper, first the continuity of \({\mathfrak{A}}\)-module homomorphism derivations on \({End_\mathfrak{A}(\mathfrak{M})}\) is investigated. We give some sufficient conditions on which every derivation on \({End_\mathfrak{A}(\mathfrak{M})}\) is inner. Next, we study approximately innerness of derivations on \({End_\mathfrak{A}(\mathfrak{M})}\) for a σ-unital C*-algebra \({\mathfrak{A}}\) and full Hilbert \({\mathfrak{A}}\)-module \({\mathfrak{M}}\). Finally, we show that every bounded linear mapping on \({End_\mathfrak{A}(\mathfrak{M})}\) which behave like a derivation when acting on pairs of elements with unit product, is a Jordan derivation.  相似文献   

2.
We consider local partial clones defined on an uncountable set E having the form Polp(\({\mathfrak{R}}\)), where \({\mathfrak{R}}\) is a set of relations on E. We investigate the notion of weak extendability of partial clones of the type Polp(\({\mathfrak{R}}\)) (in the case of E countable, this coincides with the notion of extendability previously introduced by the author in 1987) which allows us to expand to uncountable sets results on the characterization of Galois-closed sets of relations as well as model-theoretical properties of a relational structure \({\mathfrak{R}}\). We establish criteria for positive primitive elimination sets (sets of positive primitive formulas over \({\mathfrak{R}}\) through which any positive primitive definable relation over \({\mathfrak{R}}\) can be expressed without existential quantifiers) for finite \({\mathfrak{R}}\) as well as for \({\mathfrak{R}}\) having only finite number of positive primitive definable relations of any arity. Emphasizing the difference between countable and uncountable sets, we show that, unlike in the countable case, the characterization of Galois-closed sets InvPol(\({\mathfrak{R}}\)) (that is, all relations which are invariant under all operations from the clone Pol(\({\mathfrak{R}}\)) defined on an uncountable set) cannot be obtained via the application of finite positive primitive formulas together with infinite intersections and unions of updirected sets of relations from \({\mathfrak{R}}\).  相似文献   

3.
Let M be a left module for the Schur algebra S(nr), and let \({s \in \mathbb{Z}^+}\) . Then \({M^{\otimes s}}\) is a \({(S(n,\,rs), F{\mathfrak{S}_{s}})}\) -bimodule, where the symmetric group \({{\mathfrak{S}_s}}\) on s letters acts on the right by place permutations. We show that the Schur functor f rs sends \({M^{\otimes s}}\) to the \({(F{\mathfrak{S}_{rs}},F{\mathfrak{S}_s})}\) -bimodule \({F\mathfrak{S}_{rs}\otimes_{F(\mathfrak{S}_{r}\wr{\mathfrak{S}_s})} ((f_rM)^{\otimes s}\otimes_{F} F{\mathfrak{S}_s})}\) . As a corollary, we obtain the image under the Schur functor of the Lie power L s (M), exterior power \({\bigwedge^s(M)}\) of M and symmetric power S s (M).  相似文献   

4.
Given an i.i.d sample (Y i , Z i ), taking values in \({\mathbb{R}^{d'}\times\mathbb{R}^d}\), we consider a collection Nadarya–Watson kernel estimators of the conditional expectations \({\mathbb{E}( <\,c_g(z),g(Y)>+d_g(z)\mid Z=z)}\), where z belongs to a compact set \({H\subset \mathbb{R}^d}\), g a Borel function on \({\mathbb{R}^{d'}}\) and c g (·), d g (·) are continuous functions on \({\mathbb{R}^d}\). Given two bandwidth sequences \({h_n<\mathfrak{h}_n}\) fulfilling mild conditions, we obtain an exact and explicit almost sure limit bounds for the deviations of these estimators around their expectations, uniformly in \({g\in\mathcal{G},\;z\in H}\) and \({h_n\le h\le \mathfrak{h}_n}\) under mild conditions on the density f Z , the class \({\mathcal{G}}\), the kernel K and the functions c g (·), d g (·). We apply this result to prove that smoothed empirical likelihood can be used to build confidence intervals for conditional probabilities \({\mathbb{P}( Y\in C\mid Z=z)}\), that hold uniformly in \({z\in H,\; C\in \mathcal{C},\; h\in [h_n,\mathfrak{h}_n]}\). Here \({\mathcal{C}}\) is a Vapnik–Chervonenkis class of sets.  相似文献   

5.
Let \({\mathbf{H}}^n_{{\mathbb K}}\) denote the symmetric space of rank-1 and of non-compact type and let \(d_{{\mathfrak H}}\) be the Korányi metric defined on its boundary. We prove that if d is a metric on \(\partial {\mathbf{H}}^n_{{\mathbb K}}\) such that all Heisenberg similarities are d-Möbius maps, then under a topological condition d is a constant multiple of a power of \(d_{{\mathfrak H}}\).  相似文献   

6.
Let \({\mathcal{M}}\) be a semifinite von Neumann algebra with a faithful, normal, semifinite trace \({\tau}\) and E be a strongly symmetric Banach function space on \({[0,\tau({\bf 1}))}\) . We show that an operator x in the unit sphere of \({E(\mathcal{M}, \tau)}\) is k-extreme, \({k \in {\mathbb{N}}}\) , whenever its singular value function \({\mu(x)}\) is k-extreme and one of the following conditions hold (i) \({\mu(\infty, x) = \lim_{t\to\infty}\mu(t, x) = 0}\) or (ii) \({n(x)\mathcal{M}n(x^*) = 0}\) and \({|x| \geq \mu(\infty, x)s(x)}\) , where n(x) and s(x) are null and support projections of x, respectively. The converse is true whenever \({\mathcal{M}}\) is non-atomic. The global k-rotundity property follows, that is if \({\mathcal{M}}\) is non-atomic then E is k-rotund if and only if \(E(\mathcal{M}, \tau)\) is k-rotund. As a consequence of the noncommutative results we obtain that f is a k-extreme point of the unit ball of the strongly symmetric function space E if and only if its decreasing rearrangement \({\mu(f)}\) is k-extreme and \({|f| \geq \mu(\infty,f)}\) . We conclude with the corollary on orbits Ω(g) and Ω′(g). We get that f is a k-extreme point of the orbit \({\Omega(g),\,g \in L_1 + L_{\infty}}\) , or \({\Omega'(g),\,g \in L_1[0, \alpha),\,\alpha < \infty}\) , if and only if \({\mu(f) = \mu(g)}\) and \({|f| \geq \mu(\infty, f)}\) . From this we obtain a characterization of k-extreme points in Marcinkiewicz spaces.  相似文献   

7.
Let k be a field of characteristic zero. Let V be a k-scheme of finite type, i.e., a k-variety, which is integral. We prove that if the associated arc scheme \({\mathcal{L}_{\infty}(V)}\) is reduced, then the \({\mathcal{O}_{V}}\)-Module \({\Omega_{V/k}^{1}}\) is torsion-free. Then if the k-variety V is assumed to be locally a complete intersection (lci), we deduce that the k-variety V is normal. We also obtain the following consequence: for every class \({\mathfrak{C}}\) of integral k-curves which satisfies the Berger conjecture, and for every \({\mathscr{C} \in \mathfrak{C}}\), the k-curve \({\mathscr{C}}\) is smooth if and only if \({\mathcal{L}(\mathscr{C})}\) is reduced.  相似文献   

8.
Let \({\mathcal{R}}\) be a unital commutative ring and \({\mathcal{M}}\) be a 2-torsion free central \({\mathcal{R}}\) -bimodule. In this paper, for \({n \geqq 3}\), we show that every local derivation from M n (\({\mathcal{R}}\)) into M n (\({\mathcal{M}}\)) is a derivation.  相似文献   

9.
Let H be a real algebraic group acting equivariantly with finitely many orbits on a real algebraic manifold X and a real algebraic bundle \({\mathcal {E}}\) on X. Let \(\mathfrak {h}\) be the Lie algebra of H. Let \(\mathcal {S}(X,{\mathcal {E}})\) be the space of Schwartz sections of \({\mathcal {E}}\). We prove that \(\mathfrak {h}\mathcal {S}(X,{\mathcal {E}})\) is a closed subspace of \(\mathcal {S}(X,{\mathcal {E}})\) of finite codimension. We give an application of this result in the case when H is a real spherical subgroup of a real reductive group G. We deduce an equivalence of two old conjectures due to Casselman: the automatic continuity and the comparison conjecture for zero homology. Namely, let \(\pi \) be a Casselman–Wallach representation of G and V be the corresponding Harish–Chandra module. Then the natural morphism of coinvariants \(V_{\mathfrak {h}}\rightarrow \pi _{\mathfrak {h}}\) is an isomorphism if and only if any linear \(\mathfrak {h}\)-invariant functional on V is continuous in the topology induced from \(\pi \). The latter statement is known to hold in two important special cases: if H includes a symmetric subgroup, and if H includes the nilradical of a minimal parabolic subgroup of G.  相似文献   

10.
Let M be a finitely generated module of dimension d and depth t over a Noetherian local ring (A, \({\mathfrak{m}}\)) and I an \({\mathfrak{m}}\)-primary ideal. In the main result it is shown that the last t Hilbert coefficients \({e_{d-t+1}(I,M),\ldots, e_{d}(I,M)}\) are bounded below and above in terms of the first d ? t + 1 Hilbert coefficients \({e_{0}(I,M),\ldots,e_{d-t}(I,M)}\) and d.  相似文献   

11.
The aim of this paper is to study the problem of which solvable Lie groups admit an Einstein left invariant metric. The space \({\mathcal{N}}\) of all nilpotent Lie brackets on \({\mathbb{R}^n}\) parametrizes a set of (n + 1)-dimensional rank-one solvmanifolds \({\{S_{\mu}:\mu\in\mathcal{N}\}}\), containing the set of all those which are Einstein in that dimension. The moment map for the natural GL n -action on \({\mathcal{N}}\), evaluated at \({\mu\in\mathcal{N}}\), encodes geometric information on S μ and suggests the use of strong results from geometric invariant theory. For instance, the functional on \({\mathcal{N}}\) whose critical points are precisely the Einstein S μ ’s, is the square norm of this moment map. We use a GL n -invariant stratification for the space \({\mathcal{N}}\) and show that there is a strong interplay between the strata and the Einstein condition on the solvmanifolds S μ . As an application, we obtain criteria to decide whether a given nilpotent Lie algebra can be the nilradical of a rank-one Einstein solvmanifold or not. We find several examples of \({\mathbb{N}}\)-graded (even 2-step) nilpotent Lie algebras which are not. A classification in the 7-dimensional, 6-step case and an existence result for certain 2-step algebras associated to graphs are also given.  相似文献   

12.
In this paper, we study free probability on tensor product algebra \(\mathfrak {M} = M\,\otimes _{\mathbb {C}}\,{\mathcal {A}}\) of a \(W^{*}\)-algebra M and the algebra \({\mathcal {A}}\), consisting of all arithmetic functions equipped with the functional addition and the convolution. We study free-distributional data of certain elements of \(\mathfrak {M}\), and study freeness on \(\mathfrak {M}\), affected by fixed primes.  相似文献   

13.
Let \({\mathbb {F}}\) be a field, V a vector space of dimension n over \({\mathbb {F}}\). Then the set of bilinear forms on V forms a vector space of dimension \(n^2\) over \({\mathbb {F}}\). For char \({\mathbb {F}}\ne 2\), if T is an invertible linear map from V onto V then the set of T-invariant bilinear forms, forms a subspace of this space of forms. In this paper, we compute the dimension of T-invariant bilinear forms over \({\mathbb {F}}\). Also we investigate similar type of questions for the infinitesimally T-invariant bilinear forms (T-skew symmetric forms). Moreover, we discuss the existence of nondegenerate invariant (resp. infinitesimally invariant) bilinear forms.  相似文献   

14.
We study the impedance functions of conservative L-systems with the unbounded main operators. In addition to the generalized Donoghue class \({\mathfrak {M}}_\kappa \) of Herglotz–Nevanlinna functions considered by the authors earlier, we introduce “inverse” generalized Donoghue classes \({\mathfrak {M}}_\kappa ^{-1}\) of functions satisfying a different normalization condition on the generating measure, with a criterion for the impedance function \(V_\Theta (z)\) of an L-system \(\Theta \) to belong to the class \({\mathfrak {M}}_\kappa ^{-1}\) presented. In addition, we establish a connection between “geometrical” properties of two L-systems whose impedance functions belong to the classes \({\mathfrak {M}}_\kappa \) and \({\mathfrak {M}}_\kappa ^{-1}\), respectively. In the second part of the paper we introduce a coupling of two L-system and show that if the impedance functions of two L-systems belong to the generalized Donoghue classes \({\mathfrak {M}}_{\kappa _1}\)(\({\mathfrak {M}}_{\kappa _1}^{-1}\)) and \({\mathfrak {M}}_{\kappa _2}\)(\({\mathfrak {M}}_{\kappa _2}^{-1}\)), then the impedance function of the coupling falls into the class \({\mathfrak {M}}_{\kappa _1\kappa _2}\). Consequently, we obtain that if an L-system whose impedance function belongs to the standard Donoghue class \({\mathfrak {M}}={\mathfrak {M}}_0\) is coupled with any other L-system, the impedance function of the coupling belongs to \({\mathfrak {M}}\) (the absorbtion property). Observing the result of coupling of n L-systems as n goes to infinity, we put forward the concept of a limit coupling which leads to the notion of the system attractor, two models of which (in the position and momentum representations) are presented. All major results are illustrated by various examples.  相似文献   

15.
Let \(G=G(k)\) be a connected reductive group over a p-adic field k. The smooth (and tempered) complex representations of G can be considered as the nondegenerate modules over the Hecke algebra \({\mathcal {H}}={\mathcal {H}}(G)\) and the Schwartz algebra \({\mathcal {S}}={\mathcal {S}}(G)\) forming abelian categories \({\mathcal {M}}(G)\) and \({\mathcal {M}}^t(G)\), respectively. Idempotents \(e\in {\mathcal {H}}\) or \({\mathcal {S}}\) define full subcategories \({\mathcal {M}}_e(G)= \{V : {\mathcal {H}}eV=V\}\) and \({\mathcal {M}}_e^t(G)= \{V : {\mathcal {S}}eV=V\}\). Such an e is said to be special (in \({\mathcal {H}}\) or \({\mathcal {S}}\)) if the corresponding subcategory is abelian. Parallel to Bernstein’s result for \(e\in {\mathcal {H}}\) we will prove that, for special \(e \in {\mathcal {S}}\), \({\mathcal {M}}_e^t(G) = \prod _{\Theta \in \theta _e} {\mathcal {M}}^t(\Theta )\) is a finite direct product of component categories \({\mathcal {M}}^t(\Theta )\), now referring to connected components of the center of \({\mathcal {S}}\). A special \(e\in {\mathcal {H}}\) will be also special in \({\mathcal {S}}\), but idempotents \(e\in {\mathcal {H}}\) not being special can become special in \({\mathcal {S}}\). To obtain conditions we consider the sets \(\mathrm{Irr}^t(G) \subset \mathrm{Irr}(G)\) of (tempered) smooth irreducible representations of G, and we view \(\mathrm{Irr}(G)\) as a topological space for the Jacobson topology defined by the algebra \({\mathcal {H}}\). We use this topology to introduce a preorder on the connected components of \(\mathrm{Irr}^t(G)\). Then we prove that, for an idempotent \(e \in {\mathcal {H}}\) which becomes special in \({\mathcal {S}}\), its support \(\theta _e\) must be saturated with respect to that preorder. We further analyze the above decomposition of \({\mathcal {M}}_e^t(G)\) in the case where G is k-split with connected center and where \(e = e_J \in {\mathcal {H}}\) is the Iwahori idempotent. Here we can use work of Kazhdan and Lusztig to relate our preorder on the support \(\theta _{e_J}\) to the reverse of the natural partial order on the unipotent classes in G. We finish by explicitly computing the case \(G=GL_n\), where \(\theta _{e_J}\) identifies with the set of partitions of n. Surprisingly our preorder (which is a partial order now) is strictly coarser than the reverse of the dominance order on partitions.  相似文献   

16.
Let \((R, \mathfrak {m})\) be a local ring and M a finitely generated R-module. It is shown that if M is relative Cohen–Macaulay with respect to an ideal \(\mathfrak {a}\) of R, then \({\text {Ann}}_R(H_{\mathfrak {a}}^{{\text {cd}}(\mathfrak {a}, M)}(M))={\text {Ann}}_RM/L={\text {Ann}}_RM\) and \({\text {Ass}}_R (R/{\text {Ann}}_RM)\subseteq \{\mathfrak {p}\in {\text {Ass}}_R M|\,\mathrm{cd}(\mathfrak {a}, R/\mathfrak {p})={\text {cd}}(\mathfrak {a}, M)\},\) where L is the largest submodule of M such that \(\mathrm{cd}(\mathfrak {a}, L)< \mathrm{cd}(\mathfrak {a}, M)\). We also show that if \(H^{\dim M}_{\mathfrak {a}}(M)=0\), then \({\text {Att}}_R(H^{\dim M-1}_{\mathfrak {a}}(M))= \{\mathfrak {p}\in {\text {Supp}}(M)|\mathrm{cd}(\mathfrak {a}, R/\mathfrak {p})=\dim M-1\},\) and so the attached primes of \(H^{\dim M-1}_{\mathfrak {a}}(M)\) depend only on \({\text {Supp}}(M)\). Finally, we prove that if M is an arbitrary module (not necessarily finitely generated) over a Noetherian ring R with \(\mathrm{cd}(\mathfrak {a}, M)=\mathrm{cd}(\mathfrak {a}, R/{\text {Ann}}_RM)\), then \({\text {Att}}_R(H^{\mathrm{cd}(\mathfrak {a}, M)}_{\mathfrak {a}}(M))\subseteq \{\mathfrak {p}\in {\text {V}}({\text {Ann}}_RM)|\,\mathrm{cd}(\mathfrak {a}, R/\mathfrak {p})=\mathrm{cd}(\mathfrak {a}, M)\}.\) As a consequence of this, it is shown that if \(\dim M=\dim R\), then \({\text {Att}}_R(H^{\dim M}_{\mathfrak {a}}(M))\subseteq \{\mathfrak {p}\in {\text {Ass}}_R M|\mathrm{cd}(\mathfrak {a}, R/\mathfrak {p})=\dim M\}\).  相似文献   

17.
Let R be a commutative Noetherian ring, \({\mathfrak {a}}\) an ideal of R, M a finitely generated R-module, and \({\mathcal {S}}\) a Serre subcategory of the category of R-modules. We introduce the concept of \({\mathcal {S}}\)-minimax R-modules and the notion of the \({\mathcal {S}}\)-finiteness dimension
$$\begin{aligned} f_{\mathfrak {a}}^{{\mathcal {S}}}(M):=\inf \lbrace f_{\mathfrak {a}R_{\mathfrak {p}}}(M_{\mathfrak {p}}) \vert \mathfrak {p}\in {\text {Supp}}_R(M/ \mathfrak {a}M) \text { and } R/\mathfrak {p}\notin {\mathcal {S}} \rbrace \end{aligned}$$
and we will prove that: (i) If \({\text {H}}_{\mathfrak {a}}^{0}(M), \cdots ,{\text {H}}_{\mathfrak {a}}^{n-1}(M)\) are \({\mathcal {S}}\)-minimax, then the set \(\lbrace \mathfrak {p}\in {\text {Ass}}_R( {\text {H}}_{\mathfrak {a}}^{n}(M)) \vert R/\mathfrak {p}\notin {\mathcal {S}}\rbrace \) is finite. This generalizes the main results of Brodmann–Lashgari (Proc Am Math Soc 128(10):2851–2853, 2000), Quy (Proc Am Math Soc 138:1965–1968, 2010), Bahmanpour–Naghipour (Proc Math Soc 136:2359–2363, 2008), Asadollahi–Naghipour (Commun Algebra 43:953–958, 2015), and Mehrvarz et al. (Commun Algebra 43:4860–4872, 2015). (ii) If \({\mathcal {S}}\) satisfies the condition \(C_{\mathfrak {a}}\), then
$$\begin{aligned} f_{\mathfrak {a}}^{{\mathcal {S}}}(M)= \inf \lbrace i\in {\mathbb {N}}_{0} \vert {\text {H}}_{\mathfrak {a}}^{i}(M) \text { is not } {\mathcal {S}}\hbox {-}minimax\rbrace . \end{aligned}$$
This is a formulation of Faltings’ Local-global principle for the \({\mathcal {S}}\)-minimax local cohomology modules. (iii) \( \sup \lbrace i\in {\mathbb {N}}_{0} \vert {\text {H}}_{\mathfrak {a}}^{i}(M) \text { is not } {\mathcal {S}}\text {-minimax} \rbrace = \sup \lbrace i\in {\mathbb {N}}_{0} \vert {\text {H}}_{\mathfrak {a}}^{i}(M) \text { is not in } {\mathcal {S}} \rbrace \).
  相似文献   

18.
Let \({\mathcal{L} = \sum_{i=1}^m X_i^2}\) be a real sub-Laplacian on a Carnot group \({\mathbb{G}}\) and denote by \({\nabla_\mathcal{L} = (X_1,\ldots,X_m)}\) the intrinsic gradient related to \({\mathcal{L}}\). Our aim in this present paper is to analyze some features of the \({\mathcal{L}}\)-gauge functions on \({\mathbb{G}}\), i.e., the homogeneous functions d such that \({\mathcal{L}(d^\gamma) = 0}\) in \({\mathbb{G} \setminus \{0\}}\) , for some \({\gamma \in \mathbb{R} \setminus \{0\}}\). We consider the relation of \({\mathcal{L}}\)-gauge functions with: the \({\mathcal{L}}\)-Eikonal equation \({|\nabla_\mathcal{L} u| = 1}\) in \({\mathbb{G}}\); the Mean Value Formulas for the \({\mathcal{L}}\)-harmonic functions; the fundamental solution for \({\mathcal{L}}\); the Bôcher-type theorems for nonnegative \({\mathcal{L}}\)-harmonic functions in “punctured” open sets \({\dot \Omega:= \Omega \setminus \{x_0\}}\).  相似文献   

19.
We show that symmetric block designs \({\mathcal {D}}=({\mathcal {P}},{\mathcal {B}})\) can be embedded in a suitable commutative group \({\mathfrak {G}}_{\mathcal {D}}\) in such a way that the sum of the elements in each block is zero, whereas the only Steiner triple systems with this property are the point-line designs of \({\mathrm {PG}}(d,2)\) and \({\mathrm {AG}}(d,3)\). In both cases, the blocks can be characterized as the only k-subsets of \(\mathcal {P}\) whose elements sum to zero. It follows that the group of automorphisms of any such design \(\mathcal {D}\) is the group of automorphisms of \({\mathfrak {G}}_\mathcal {D}\) that leave \(\mathcal {P}\) invariant. In some special cases, the group \({\mathfrak {G}}_\mathcal {D}\) can be determined uniquely by the parameters of \(\mathcal {D}\). For instance, if \(\mathcal {D}\) is a 2-\((v,k,\lambda )\) symmetric design of prime order p not dividing k, then \({\mathfrak {G}}_\mathcal {D}\) is (essentially) isomorphic to \(({\mathbb {Z}}/p{\mathbb {Z}})^{\frac{v-1}{2}}\), and the embedding of the design in the group can be described explicitly. Moreover, in this case, the blocks of \(\mathcal {B}\) can be characterized also as the v intersections of \(\mathcal {P}\) with v suitable hyperplanes of \(({\mathbb {Z}}/p{\mathbb {Z}})^{\frac{v-1}{2}}\).  相似文献   

20.
Let \({\mathcal {C}}\) be a q-ary code of length n and size M, and \({\mathcal {C}}(i) = \{\mathbf{c}(i) \ | \ \mathbf{c}=(\mathbf{c}(1), \mathbf{c}(2), \ldots , \mathbf{c}(n))^{T} \in {\mathcal {C}}\}\) be the set of ith coordinates of \({\mathcal {C}}\). The descendant code of a sub-code \({\mathcal {C}}^{'} \subseteq {\mathcal {C}}\) is defined to be \({\mathcal {C}}^{'}(1) \times {\mathcal {C}}^{'}(2) \times \cdots \times {\mathcal {C}}^{'}(n)\). In this paper, we introduce a multimedia analogue of codes with the identifiable parent property (IPP), called multimedia IPP codes or t-MIPPC(nMq), so that given the descendant code of any sub-code \({\mathcal {C}}^{'}\) of a multimedia t-IPP code \({\mathcal {C}}\), one can always identify, as IPP codes do in the generic digital scenario, at least one codeword in \({\mathcal {C}}^{'}\). We first derive a general upper bound on the size M of a multimedia t-IPP code, and then investigate multimedia 3-IPP codes in more detail. We characterize a multimedia 3-IPP code of length 2 in terms of a bipartite graph and a generalized packing, respectively. By means of these combinatorial characterizations, we further derive a tight upper bound on the size of a multimedia 3-IPP code of length 2, and construct several infinite families of (asymptotically) optimal multimedia 3-IPP codes of length 2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号