首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 976 毫秒
1.
Characterization of the cysteine content of proteins is a key aspect of proteomics. By defining both the total number of cysteines and their bound/unbound state, the number of candidate proteins considered in database searches is significantly constrained. Herein we present a methodology that utilizes 266 nm UVPD to count the number of free and bound cysteines in intact proteins. In order to attain this goal, proteins were derivatized with N-(phenylseleno)phthalimide (NPSP) to install a selectively cleavable Se–S bond upon 266 UVPD. The number of Se–S bonds cleaved upon UVPD, a process that releases SePh moieties, corresponds to the number of cysteine residues per protein.
Graphical Abstract ?
  相似文献   

2.
Membrane protein complexes are commonly introduced to the mass spectrometer solubilized in detergent micelles. The collisional activation used to remove the detergent, however, often causes protein unfolding and dissociation. As in the case for soluble proteins, electrospray in the positive ion mode is most commonly used for the study of membrane proteins. Here we show several distinct advantages of employing the negative ion mode. Negative polarity can yield lower average charge states for membrane proteins solubilized in saccharide detergents, with enhanced peak resolution and reduced adduct formation. Most importantly, we demonstrate that negative ion mode electrospray ionization (ESI) minimizes subunit dissociation in the gas phase, allowing access to biologically relevant oligomeric states. Together, these properties mean that intact membrane protein ions can be generated in a greater range of solubilizing detergents. The formation of negative ions, therefore, greatly expands the possibilities of using mass spectrometry on this intractable class of protein.
Graphical Abstract ?
  相似文献   

3.
Dissociation of proteins and peptides by 193 nm ultraviolet photodissociation (UVPD) has gained momentum in proteomic studies because of the diversity of backbone fragments that are produced and subsequent unrivaled sequence coverage obtained by the approach. The pathways that form the basis for the production of particular ion types are not completely understood. In this study, a statistical approach is used to probe hydrogen atom elimination from a + 1 radical ions, and different extents of elimination are found to vary as a function of the identity of the C-terminal residue of the a product ions and the presence or absence of hydrogen bonds to the cleaved residue.
Graphical Abstract ?
  相似文献   

4.
Quadrupole mass filters using non-sinusoidal driving potentials present exciting opportunities for new functionality. Predicting figures of merit like resolving power and transmission efficiency helps characterize these emerging devices. To this end, matrix methods of solving the Hill equation of ion motion are employed to calculate stability diagrams and pseudopotential well depth maps in the a,q plane for arbitrary waveforms. The theoretical resolving power and well depth of digital, trapezoidal and sinusoidal mass filters are compared. Simplified expressions for digital mass filter operation are presented.
Graphical Abstract ?
  相似文献   

5.
Peptides with deamidated asparagine residues and oxidized methionine residues are often not resolved sufficiently to allow quantitation of their native and modified forms using reversed phase (RP) chromatography. The accurate quantitation of these modifications is vital in protein biotherapeutic analysis because they can affect a protein’s function, activity, and stability. We demonstrate here that hydrophilic interaction liquid chromatography (HILIC) adequately and predictably separates peptides with these modifications from their native counterparts. Furthermore, coefficients describing the extent of the hydrophilicity of these modifications have been derived and were incorporated into a previously made peptide retention prediction model that is capable of predicting the retention times of peptides with and without these modifications.
Graphical Abstract ?
  相似文献   

6.
A number of proteomic database search engines implement multi-stage strategies aiming at increasing the sensitivity of proteome analysis. These approaches often employ a subset of the original database for the secondary stage of analysis. However, if target-decoy approach (TDA) is used for false discovery rate (FDR) estimation, the multi-stage strategies may violate the underlying assumption of TDA that false matches are distributed uniformly across the target and decoy databases. This violation occurs if the numbers of target and decoy proteins selected for the second search are not equal. Here, we propose a method of decoy database generation based on the previously reported decoy fusion strategy. This method allows unbiased TDA-based FDR estimation in multi-stage searches and can be easily integrated into existing workflows utilizing popular search engines and post-search algorithms.
Graphical Abstract ?
  相似文献   

7.
Aggregation of protein therapeutics has long been a concern across different stages of manufacturing processes in the biopharmaceutical industry. It is often indicative of aberrant protein therapeutic higher-order structure. In this study, the aggregation propensity of a human Fc-fusion protein therapeutic was characterized. Hydrogen/deuterium exchange mass spectrometry (HDX-MS) was applied to examine the conformational dynamics of dimers collected from a bioreactor. HDX-MS data combined with spatial aggregation propensity calculations revealed a potential aggregation interface in the Fc domain. This study provides a general strategy for the characterization of the aggregation propensity of Fc-fusion proteins at the molecular level.
Graphical Abstract
  相似文献   

8.
Herein we report the successful implementation of the consecutive and simultaneous photodissociation with high (213 nm) and low (10.6 μm) energy photons (HiLoPD, high-low photodissociation) on ubiquitin in a quadrupole-Orbitrap mass spectrometer. Absorption of high-energy UV photon is dispersed over the whole protein and stimulates extensive C–Cα backbone fragmentation, whereas low-energy IR photon gradually increases the internal energy and thus preferentially dissociates the most labile amide (C–N) bonds. We noticed that simultaneous irradiation of UV and IR lasers on intact ubiquitin in a single MS/MS experiment provides a rich and well-balanced fragmentation array of a/x, b/y, and z ions. Moreover, secondary fragmentation from a/x and z ions leads to the formation of satellite side-chain ions (d, v, and w) and can help to distinguish isomeric residues in a protein. Implementation of high-low photodissociation in a high-resolution mass spectrometer may offer considerable benefits to promote a comprehensive portrait of protein characterization.
Graphical Abstract ?
  相似文献   

9.
First results are reported using a simple, fast, and reproducible matrix-assisted ionization (MAI) sample introduction method that provides substantial improvements relative to previously published MAI methods. The sensitivity of the new MAI methods, which requires no laser, high voltage, or nebulizing gas, is comparable to those reported for MALDI-TOF and n-ESI. High resolution full acquisition mass spectra having low chemical background are acquired from low nanoliters of solution using only a few femtomoles of analyte. The limit-of-detection for angiotensin II is less than 50 amol on an Orbitrap Exactive mass spectrometer. Analysis of peptides, including a bovine serum albumin digest, and drugs, including drugs in urine without a purification step, are reported using a 1 μL zero dead volume syringe in which only the analyte solution wetting the walls of the syringe needle is used in the analysis.  相似文献   

10.
The development of rapid, sensitive, and accurate mass spectrometric methods for measuring peptides, proteins, and even intact protein assemblies has made mass spectrometry (MS) an extraordinarily enabling tool for structural biology. Here, we provide a personal perspective of the increasingly useful role that mass spectrometric techniques are exerting during the elucidation of higher order protein structures. Areas covered in this brief perspective include MS as an enabling tool for the high resolution structural biologist, for compositional analysis of endogenous protein complexes, for stoichiometry determination, as well as for integrated approaches for the structural elucidation of protein complexes. We conclude with a vision for the future role of MS-based techniques in the development of a multi-scale molecular microscope.
Graphical Abstract ?
  相似文献   

11.
A new class of compounds, mono- and bis-haloethylphosphonates (HAPs and bisHAPs, respectively), listed in Schedule 2.B.04 of the Chemical Weapons Convention (CWC), has been synthesized and studied by GC-MS with two aims. First, to improve the identification of this type of chemicals by the Organization for the Prohibition of Chemical Weapons, (OPCW). Second, to study the synergistic effect of halogen and silicon atoms in molecules undergoing mass spectrometry. Fragmentation patterns of trimethylsilyl derivatives of HAPs were found to depend on the nature of the halogen atom; this was in agreement with DFT-calculations. The data suggest that a novel intramolecular halogen transfer takes place during the fragmentation process.
Graphical Abstract ?
  相似文献   

12.
A high performance liquid chromatograph (HPLC)was interfaced to an atmospheric drift tube ion mobility time of flight mass spectrometry. The power of multidimensional separation was demonstrated using chili pepper extracts. The ambient pressure drift tube ion mobility provided high resolving powers up to 166 for the HPLC eluent. With implementation of Hadamard transform (HT), the duty cycle for the ion mobility drift tube was increased from less than 1% to 50%, and the ion transmission efficiency was improved by over 200 times compared with pulsed mode, improving signal to noise ratio 10 times. HT ion mobility and TOF mass spectrometry provide an additional dimension of separation for complex samples without increasing the analysis time compared with conventional HPLC.
Graphical Abstract ?
  相似文献   

13.
A collision induced dissociation (CID) structure for lossless ion manipulations (SLIM) module is introduced and coupled to a quadrupole time-of-flight (QTOF) mass spectrometer. The SLIM CID module was mounted after an ion mobility (IM) drift tube to enable IM/CID/MS studies. The efficiency of CID was studied by using the model peptide leucine enkephalin. CID efficiencies (62%) compared favorably with other beam-type CID methods. Additionally, the SLIM CID module was used to fragment a mixture of nine peptides after IM separation. This work also represents the first application of SLIM in the 0.3 to 0.5 Torr pressure regime, an order of magnitude lower in pressure than previously studied.
Graphical Abstract ?
  相似文献   

14.
15.
The detailed chemical information contained in the vibrational spectrum of a cryogenically cooled analyte ion would, in principle, make infrared (IR) ion spectroscopy a gold standard technique for molecular identification in mass spectrometry. Despite this immense potential, there are considerable challenges in both instrumentation and methodology to overcome before the technique is analytically useful. Here, we discuss the promise of IR ion spectroscopy for small molecule analysis in the context of metabolite identification. Experimental strategies to address sensitivity constraints, poor overall duty cycle, and speed of the experiment are intimately tied to the development of a mass-selective cryogenic trap. Therefore, the most likely avenues for success, in the authors’ opinion, are presented here, alongside alternative approaches and some thoughts on data interpretation.
Graphical Abstract ?
  相似文献   

16.
Tubulin, which is the building block of microtubules, plays an important role in cell division. This critical role makes tubulin an attractive target for the development of chemotherapeutic drugs to treat cancer. Currently, there is no general binding assay for tubulin–drug interactions. The present work describes the application of the catch-and-release electrospray ionization mass spectrometry (CaR-ESI-MS) assay to investigate the binding of colchicinoid drugs to αβ-tubulin dimers extracted from porcine brain. Proof-of-concept experiments using positive (ligands with known affinities) and negative (non-binders) controls were performed to establish the reliability of the assay. The assay was then used to screen a library of seven colchicinoid analogues to test their binding to tubulin and to rank their affinities.
Graphical Abstract ?
  相似文献   

17.
We provide the initial performance evaluation of a 21 Tesla Fourier transform ion cyclotron resonance mass spectrometer operating at the Environmental Molecular Sciences Laboratory at the Pacific Northwest National Laboratory. The spectrometer constructed for the 21T system employs a commercial dual linear ion trap mass spectrometer coupled to a FTICR spectrometer designed and built in-house. Performance gains from moving to higher magnetic field strength are exemplified by the measurement of peptide isotopic fine structure, complex natural organic matter mixtures, and large proteins. Accurate determination of isotopic fine structure was demonstrated for doubly charged Substance P with minimal spectral averaging, and 8158 molecular formulas assigned to Suwannee River Fulvic Acid standard with root-mean-square (RMS) error of 10 ppb. We also demonstrated superior performance for intact proteins; namely, broadband isotopic resolution of the entire charge state distribution of apo-transferrin (78 kDa) and facile isotopic resolution of monoclonal antibody under a variety of acquisition parameters (e.g., 6 s time-domains with absorption mode processing yielded resolution of approximately 1 M at m/z?=?2700).
Graphical Abstract ?
  相似文献   

18.
Differential mobility spectrometry (DMS) is an ion mobility technique that has been adopted chiefly as a pre-filter for small- to medium-sized analytes (<1 000 Da). With the exception of a handful of studies that employ an analogue of DMS—field asymmetric waveform ion mobility spectroscopy (FAIMS)—the application of DMS to intact biomacromolecules remains largely unexplored. In this work, we employ DMS combined with gas-phase hydrogen deuterium exchange (DMS-HDX) to probe the gas-phase conformations generated from proteins that were initially folded, partially-folded, and unfolded in solution. Our findings indicate that proteins with distinct structural features in solution exhibit unique deuterium uptake profiles as function of their optimal transmission through the DMS. Ultimately we propose that DMS-HDX can, if properly implemented, provide rapid measurements of liquid-phase protein structural stability that could be of use in biopharmaceuticals development.
Graphical Abstract ?
  相似文献   

19.
The utility of energy sequencing for extracting an accurate matrix level interface profile using ultra-low energy SIMS (uleSIMS) is reported. Normally incident O2 + over an energy range of 0.25–2.5 keV were used to probe the interface between Si0.73Ge0.27/Si, which was also studied using high angle annular dark field scanning transmission electron microscopy (HAADF-STEM). All the SIMS profiles were linearized by taking the well understood matrix effects on ion yield and erosion rate into account. A method based on simultaneous fitting of the SIMS profiles measured at different energies is presented, which allows the intrinsic sample profile to be determined to sub-nanometer precision. Excellent agreement was found between the directly imaged HAADF-STEM interface and that derived from SIMS.
Graphical Abstract ?
  相似文献   

20.
We describe a systematic comparison of high and low resolution LC-MS/MS assays for quantification of 25-hydroxyvitamin D3 in human serum. Identical sample preparation, chromatography separations, electrospray ionization sources, precursor ion selection, and ion activation were used; the two assays differed only in the implemented final mass analyzer stage; viz. high resolution quadrupole-quadrupole-time-of-flight (QqTOF) versus low resolution triple quadrupole instruments. The results were assessed against measured concentration levels from a routine clinical chemiluminescence immunoassay. Isobaric interferences prevented the simple use of TOF-MS spectra for extraction of accurate masses and necessitated the application of collision-induced dissociation on the QqTOF platform. The two mass spectrometry assays provided very similar analytical figures of merit, reflecting the lack of relevant isobaric interferences in the MS/MS domain, and were successfully applied to determine the levels of 25-hydroxyvitamin D for patients with chronic liver disease.
Graphical Abstract ?
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号