首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We consider the perturbed Schrödinger equation
$\left\{\begin{array}{ll}{- \varepsilon ^2 \Delta u + V(x)u = P(x)|u|^{p - 2} u + k(x)|u|^{2* - 2} u} &; {\text{for}}\, x \in {\mathbb{R}}^N\\ \qquad \qquad \quad {u(x) \rightarrow 0} &; \text{as}\, {|x| \rightarrow \infty} \end{array} \right.$
where \(N\geq 3, \ 2^*=2N/(N-2)\) is the Sobolev critical exponent, \(p\in (2, 2^*)\) , P(x) and K(x) are bounded positive functions. Under proper conditions on V we show that it has at least one positive solution provided that \(\varepsilon\leq{\mathcal{E}}\) ; for any \(m\in{\mathbb{N}}\) , it has m pairs of solutions if \(\varepsilon\leq{\mathcal{E}}_{m}\) ; and suppose there exists an orthogonal involution \(\tau:{\mathbb{R}}^{N}\to{\mathbb{R}}^{N}\) such that V(x), P(x) and K(x) are τ -invariant, then it has at least one pair of solutions which change sign exactly once provided that \(\varepsilon\leq{\mathcal{E}}\) , where \({\mathcal{E}}\) and \({\mathcal{E}}_{m}\) are sufficiently small positive numbers. Moreover, these solutions \(u_\varepsilon\to 0\) in \(H^1({\mathbb{R}}^N)\) as \(\varepsilon\to 0\) .
  相似文献   

2.
Let \(x \in \mathbb {R}^{d}\), d ≥ 3, and \(f: \mathbb {R}^{d} \rightarrow \mathbb {R}\) be a twice differentiable function with all second partial derivatives being continuous. For 1 ≤ i, jd, let \(a_{ij} : \mathbb {R}^{d} \rightarrow \mathbb {R}\) be a differentiable function with all partial derivatives being continuous and bounded. We shall consider the Schrödinger operator associated to
$$\mathcal{L}f(x) = \frac12 \sum\limits_{i=1}^{d} \sum\limits_{j=1}^{d} \frac{\partial}{\partial x_{i}} \left( a_{ij}(\cdot) \frac{\partial f}{\partial x_{j}}\right)(x) + {\int}_{\mathbb{R}^{d}\setminus{\{0\}}} [f(y) - f(x) ]J(x,y)dy $$
where \(J: \mathbb {R}^{d} \times \mathbb {R}^{d} \rightarrow \mathbb {R}\) is a symmetric measurable function. Let \(q: \mathbb {R}^{d} \rightarrow \mathbb {R}.\) We specify assumptions on a, q, and J so that non-negative bounded solutions to
$$\mathcal{L}f + qf = 0 $$
satisfy a Harnack inequality. As tools we also prove a Carleson estimate, a uniform Boundary Harnack Principle and a 3G inequality for solutions to \(\mathcal {L}f = 0.\)
  相似文献   

3.
Given a model \(\mathcal {M}\) of set theory, and a nontrivial automorphism j of \(\mathcal {M}\), let \(\mathcal {I}_{\mathrm {fix}}(j)\) be the submodel of \(\mathcal {M}\) whose universe consists of elements m of \(\mathcal {M}\) such that \(j(x)=x\) for every x in the transitive closure of m (where the transitive closure of m is computed within \(\mathcal {M}\)). Here we study the class \(\mathcal {C}\) of structures of the form \(\mathcal {I}_{\mathrm {fix}}(j)\), where the ambient model \(\mathcal {M}\) satisfies a frugal yet robust fragment of \(\mathrm {ZFC}\) known as \(\mathrm {MOST}\), and \(j(m)=m\) whenever m is a finite ordinal in the sense of \(\mathcal {M}.\) Our main achievement is the calculation of the theory of \(\mathcal {C}\) as precisely \(\mathrm {MOST+\Delta }_{0}^{\mathcal {P}}\)-\(\mathrm {Collection}\). The following theorems encapsulate our principal results: Theorem A. Every structure in \(\mathcal {C}\) satisfies \(\mathrm {MOST+\Delta }_{0}^{\mathcal {P}}\)-\(\mathrm { Collection}\). Theorem B. Each of the following three conditions is sufficient for a countable structure \(\mathcal {N}\) to be in \(\mathcal {C}\):(a) \(\mathcal {N}\) is a transitive model of \(\mathrm {MOST+\Delta }_{0}^{\mathcal {P}}\)-\(\mathrm {Collection}\).(b) \(\mathcal {N}\) is a recursively saturated model of \(\mathrm {MOST+\Delta }_{0}^{\mathcal {P}}\)-\(\mathrm {Collection}\).(c) \(\mathcal {N}\) is a model of \(\mathrm {ZFC}\). Theorem C. Suppose \(\mathcal {M}\) is a countable recursively saturated model of \(\mathrm {ZFC}\) and I is a proper initial segment of \(\mathrm {Ord}^{\mathcal {M}}\) that is closed under exponentiation and contains \(\omega ^\mathcal {M}\) . There is a group embedding \(j\longmapsto \check{j}\) from \(\mathrm {Aut}(\mathbb {Q})\) into \(\mathrm {Aut}(\mathcal {M})\) such that I is the longest initial segment of \(\mathrm {Ord}^{\mathcal {M}}\) that is pointwise fixed by \(\check{j}\) for every nontrivial \(j\in \mathrm {Aut}(\mathbb {Q}).\) In Theorem C, \(\mathrm {Aut}(X)\) is the group of automorphisms of the structure X, and \(\mathbb {Q}\) is the ordered set of rationals.  相似文献   

4.
Let \(H^{2}_{m}\) be the Drury–Arveson (DA) module which is the reproducing kernel Hilbert space with the kernel function \((z, w) \in\mathbb{B}^{m} \times\mathbb{B}^{m} \rightarrow (1 - \sum_{i=1}^{m}z_{i} \bar{w}_{i})^{-1}\). We investigate for which multipliers \(\theta: \mathbb{B}^{m} \rightarrow \mathcal{L}(\mathcal{E}, \mathcal {E}_{*})\) with ran?M θ closed, the quotient module \(\mathcal{H}_{\theta}\), given by
$\cdots\longrightarrow H^2_m \otimes\mathcal{E} \stackrel{M_{\theta }}{\longrightarrow}H^2_m \otimes\mathcal{E}_* \stackrel{\pi_{\theta}}{\longrightarrow}\mathcal{H}_{\theta}\longrightarrow0,$
is similar to \(H^{2}_{m} \otimes \mathcal {F}\) for some Hilbert space \(\mathcal{F}\). Here M θ is the corresponding multiplication operator in \(\mathcal{L}(H^{2}_{m} \otimes\mathcal{E}, H^{2}_{m} \otimes\mathcal{E}_{*})\) for Hilbert spaces \(\mathcal{E}\) and \(\mathcal{E}_{*}\) and \(\mathcal {H}_{\theta}\) is the quotient module \((H^{2}_{m} \otimes\mathcal{E}_{*})/ M_{\theta}(H^{2}_{m} \otimes\mathcal{E})\), and π θ is the quotient map. We show that a necessary condition is the existence of a multiplier ψ in \(\mathcal{M}(\mathcal{E}_{*}, \mathcal{E})\) such that
$\theta\psi\theta= \theta.$
Moreover, we show that the converse is equivalent to a structure theorem for complemented submodules of \(H^{2}_{m} \otimes\mathcal{E}\) for a Hilbert space \(\mathcal {E}\), which is valid for the case of m=1. The latter result generalizes a known theorem on similarity to the unilateral shift, but the above statement is new. Further, we show that a finite resolution of DA-modules of arbitrary multiplicity using partially isometric module maps must be trivial. Finally, we discuss the analogous questions when the underlying operator m-tuple (or algebra) is not necessarily commuting (or commutative). In this case the converse to the similarity result is always valid.
  相似文献   

5.
We introduce a new generalization of Alan Day’s doubling construction. For ordered sets \(\mathcal {L}\) and \(\mathcal {K}\) and a subset \(E \subseteq \ \leq _{\mathcal {L}}\) we define the ordered set \(\mathcal {L} \star _{E} \mathcal {K}\) arising from inflation of \(\mathcal {L}\) along E by \(\mathcal {K}\). Under the restriction that \(\mathcal {L}\) and \(\mathcal {K}\) are finite lattices, we find those subsets \(E \subseteq \ \leq _{\mathcal {L}}\) such that the ordered set \(\mathcal {L} \star _{E} \mathcal {K}\) is a lattice. Finite lattices that can be constructed in this way are classified in terms of their congruence lattices.A finite lattice is binary cut-through codable if and only if there exists a 0?1 spanning chain \(\left \{\theta _{i}\colon 0 \leq i \leq n \right \}\) in \(Con(\mathcal {L})\) such that the cardinality of the largest block of ?? i /?? i?1 is 2 for every i with 1≤in. These are exactly the lattices that can be constructed by inflation from the 1-element lattice using only the 2-element lattice. We investigate the structure of binary cut-through codable lattices and describe an infinite class of lattices that generate binary cut-through codable varieties.  相似文献   

6.
We discuss the notion of characteristic Lie algebra of a hyperbolic PDE. The integrability of a hyperbolic PDE is closely related to the properties of the corresponding characteristic Lie algebra χ. We establish two explicit isomorphisms:
  1. 1)
    the first one is between the characteristic Lie algebra \(\chi (\sinh {u})\) of the sinh-Gordon equation \(u_{xy}=\sinh {u}\) and the non-negative part \({\mathcal {L}}({\mathfrak {sl}}(2,{\mathbb {C}}))^{\ge 0}\) of the loop algebra of \({\mathfrak {sl}}(2,{\mathbb {C}})\) that corresponds to the Kac-Moody algebra \(A_{1}^{(1)}\)
    $$\chi(\sinh{u})\cong {\mathcal{L}}({\mathfrak{s}\mathfrak{l}}(2,{\mathbb{C}}))^{\ge 0}={\mathfrak{s}\mathfrak{l}}(2, {\mathbb{C}}) \otimes {\mathbb{C}}[t]. $$
     
  2. 2)
    the second isomorphism is for the Tzitzeica equation uxy = eu + e??2u
    $$\chi(e^{u}{+}e^{-2u}) \cong {\mathcal{L}}({\mathfrak{s}\mathfrak{l}}(3,{\mathbb{C}}), \mu)^{\ge0}=\bigoplus_{j = 0}^{+\infty}{\mathfrak{g}}_{j (\text{mod} \; 2)} \otimes t^{j}, $$
    where \({\mathcal {L}}({\mathfrak {sl}}(3,{\mathbb {C}}), \mu )=\bigoplus _{j \in {\mathbb {Z}}}{\mathfrak {g}}_{j (\text {mod} \; 2)} \otimes t^{j}\) is the twisted loop algebra of the simple Lie algebra \({\mathfrak {sl}}(3,{\mathbb {C}})\) that corresponds to the Kac-Moody algebra \(A_{2}^{(2)}\).
     
Hence the Lie algebras \(\chi (\sinh {u})\) and χ(eu + e??2u) are slowly linearly growing Lie algebras with average growth rates \(\frac {3}{2}\) and \(\frac {4}{3}\) respectively.  相似文献   

7.
Let \({\mathbb {K}(\mathbb {R}^{d})}\) denote the cone of discrete Radon measures on \(\mathbb {R}^{d}\). There is a natural differentiation on \(\mathbb {K}(\mathbb {R}^{d})\): for a differentiable function \(F:\mathbb {K}(\mathbb {R}^{d})\to \mathbb {R}\), one defines its gradient \(\nabla ^{\mathbb {K}}F\) as a vector field which assigns to each \(\eta \in \mathbb {K}(\mathbb {R}^{d})\) an element of a tangent space \(T_{\eta }(\mathbb {K}(\mathbb {R}^{d}))\) to \(\mathbb {K}(\mathbb {R}^{d})\) at point η. Let \(\phi :\mathbb {R}^{d}\times \mathbb {R}^{d}\to \mathbb {R}\) be a potential of pair interaction, and let μ be a corresponding Gibbs perturbation of (the distribution of) a completely random measure on \(\mathbb {R}^{d}\). In particular, μ is a probability measure on \(\mathbb {K}(\mathbb {R}^{d})\) such that the set of atoms of a discrete measure \(\eta \in \mathbb {K}(\mathbb {R}^{d})\) is μ-a.s. dense in \(\mathbb {R}^{d}\). We consider the corresponding Dirichlet form
$$\mathcal{E}^{\mathbb{K}}(F,G)={\int}_{\mathbb K(\mathbb{R}^{d})}\langle\nabla^{\mathbb{K}} F(\eta), \nabla^{\mathbb{K}} G(\eta)\rangle_{T_{\eta}(\mathbb{K})}\,d\mu(\eta). $$
Integrating by parts with respect to the measure μ, we explicitly find the generator of this Dirichlet form. By using the theory of Dirichlet forms, we prove the main result of the paper: If d ≥ 2, there exists a conservative diffusion process on \(\mathbb {K}(\mathbb {R}^{d})\) which is properly associated with the Dirichlet form \(\mathcal {E}^{\mathbb {K}}\).
  相似文献   

8.
Let \({\textnormal {R}}\) be a real closed field, \(\mathcal{P},\mathcal{Q} \subset {\textnormal {R}}[X_{1},\ldots,X_{k}]\) finite subsets of polynomials, with the degrees of the polynomials in \(\mathcal{P}\) (resp., \(\mathcal{Q}\)) bounded by d (resp., d 0). Let \(V \subset {\textnormal {R}}^{k}\) be the real algebraic variety defined by the polynomials in \(\mathcal{Q}\) and suppose that the real dimension of V is bounded by k′. We prove that the number of semi-algebraically connected components of the realizations of all realizable sign conditions of the family \(\mathcal{P}\) on V is bounded by
$\sum_{j=0}^{k'}4^j{s +1\choose j}F_{d,d_0,k,k'}(j),$
where \(s = \operatorname {card}\mathcal{P}\), and
$F_{d,d_0,k,k'}(j)=\binom{k+1}{k-k'+j+1} (2d_0)^{k-k'}d^j \max\{2d_0,d \}^{k'-j}+2(k-j+1).$
In case 2d 0d, the above bound can be written simply as
$\sum_{j = 0}^{k'} {s+1 \choose j}d^{k'} d_0^{k-k'} O(1)^{k}= (sd)^{k'} d_0^{k-k'} O(1)^k$
(in this form the bound was suggested by Matousek 2011). Our result improves in certain cases (when d 0?d) the best known bound of
$\sum_{1 \leq j \leq k'}\binom{s}{j} 4^{j} d(2d-1)^{k-1}$
on the same number proved in Basu et al. (Proc. Am. Math. Soc. 133(4):965–974, 2005) in the case d=d 0.
The distinction between the bound d 0 on the degrees of the polynomials defining the variety V and the bound d on the degrees of the polynomials in \(\mathcal{P}\) that appears in the new bound is motivated by several applications in discrete geometry (Guth and Katz in arXiv:1011.4105v1 [math.CO], 2011; Kaplan et al. in arXiv:1107.1077v1 [math.CO], 2011; Solymosi and Tao in arXiv:1103.2926v2 [math.CO], 2011; Zahl in arXiv:1104.4987v3 [math.CO], 2011).  相似文献   

9.
Consider the restriction of an irreducible unitary representation π of a Lie group G to its subgroup H. Kirillov’s revolutionary idea on the orbit method suggests that the multiplicity of an irreducible H-module ν occurring in the restriction π|H could be read from the coadjoint action of H on \(\mathcal {O}^{G} \cap \text {pr}^{-1}({\mathcal {O}}^{H})\), provided π and ν are ‘geometric quantizations’ of a G-coadjoint orbit \(\mathcal {O}^{G}\) and an H-coadjoint orbit \(\mathcal {O}^{H}\), respectively, where \(\text {pr} \colon \sqrt {-1}\mathfrak {g}^{\ast } \to \sqrt {-1}\mathfrak {h}^{\ast }\) is the projection dual to the inclusion \(\mathfrak {h} \subset \mathfrak {g}\) of Lie algebras. Such results were previously established by Kirillov, Corwin and Greenleaf for nilpotent Lie groups. In this article, we highlight specific elliptic orbits \(\mathcal {O}^{G}\) of a semisimple Lie group G corresponding to highest weight modules of scalar type. We prove that the Corwin–Greenleaf number \(\sharp (\mathcal {O}^{G} \cap \text {pr}^{-1}({\mathcal {O}}^{H}))/H\) is either zero or one for any H-coadjoint orbit \(\mathcal {O}^{H}\), whenever (G,H) is a symmetric pair of holomorphic type. Furthermore, we determine the coadjoint orbits \(\mathcal {O}^{H}\) with nonzero Corwin–Greenleaf number. Our results coincide with the prediction of the orbit philosophy, and can be seen as ‘classical limits’ of the multiplicity-free branching laws of holomorphic discrete series representations (Kobayashi [Progr. Math. 2007]).  相似文献   

10.
An operator \(S_{\varphi ,\psi }^{u}\in \mathcal {L}(L^2)\) is called the dilation of a truncated Toeplitz operator if for two symbols \(\varphi ,\psi \in L^{\infty }\) and an inner function u,
$$\begin{aligned} S_{\varphi ,\psi }^{u}f=\varphi P_uf+\psi Q_uf \end{aligned}$$
holds for \(f\in {L}^{2}\) where \(P_{u}\) denotes the orthogonal projection of \(L^2\) onto the model space \(\mathcal { K}_{u}^2=H^2{\ominus }{{u}H^2}\) and \(Q_u=I-P_u.\) In this paper, we study properties of the dilation of truncated Toeplitz operators on \(L^{2}\). In particular, we provide conditions for the dilation of truncated Toeplitz operators to be normal. As some applications, we give several examples of such operators.
  相似文献   

11.
This paper studies the cardinal interpolation operators associated with the general multiquadrics, ? α, c (x)=(∥x2 + c 2) α , \(x\in \mathbb {R}^{d}\). These operators take the form
$$\mathcal{I}_{\alpha,c}\mathbf{y}(x) = \sum\limits_{j\in\mathbb{Z}^{d}}y_{j}L_{\alpha,c}(x-j),\quad\mathbf{y}=(y_{j})_{j\in\mathbb{Z}^{d}},\quad x\in\mathbb{R}^{d}, $$
where L α, c is a fundamental function formed by integer translates of ? α, c which satisfies the interpolatory condition \(L_{\alpha ,c}(k) = \delta _{0,k},\; k\in \mathbb {Z}^{d}\). We consider recovery results for interpolation of bandlimited functions in higher dimensions by limiting the parameter \(c\to \infty \). In the univariate case, we consider the norm of the operator \(\mathcal {I}_{\alpha ,c}\) acting on ? p spaces as well as prove decay rates for L α, c using a detailed analysis of the derivatives of its Fourier transform, \(\widehat {L_{\alpha ,c}}\).
  相似文献   

12.
Let\(B_{2}^{n}\) denote the Euclidean ball in\({\mathbb R}^n\), and, given closed star-shaped body\(K \subset {\mathbb R}^{n}, M_{K}\) denote the average of the gauge of K on the Euclidean sphere. Let\(p \in (0,1)\) and let\(K \subset {\mathbb R}^{n}\) be a p-convex body. In [17] we proved that for every\(\lambda \in (0,1)\) there exists an orthogonal projection P of rank\((1 - \lambda)n\) such that
$\frac{f(\lambda)}{M_K} PB^{n}_{2} \subset PK,$
where\(f(\lambda)=c_p\lambda^{1+1/p}\) for some positive constant c p depending on p only. In this note we prove that\(f(\lambda)\) can be taken equal to\(C_p\lambda^{1/p-1/2}\). In terms of Kolmogorov numbers it means that for every\(k \leq n\)
$d_k (\hbox{Id}:\ell^{n}_{2} \to ({\mathbb R}^{n},\|\cdot\|_{K})) \leq C_p \frac{n^{1/p-1}}{k^{1/p-1/2}} \ell(\hbox{ID}: \ell^{n}_{2} \to ({\mathbb R}^{n}, \|\cdot\|_{K})),$
where\(\ell(\hbox{Id})={\bf E}\|\sum\limits^{n}_{i=1}g_i e_i\|_K\) for the independent standard Gaussian random variables\(\{g_i\}\) and the canonical basis\(\{e_i\}\) of\({\mathbb R}^n\). All results do not require the symmetry of K.
  相似文献   

13.
Let \(\mathbb {F}_{q}\) be the finite field with \(q=p^{m}\) elements, where p is an odd prime and m is a positive integer. For a positive integer t, let \(D\subset \mathbb {F}^{t}_{q}\) and let \({\mathrm {Tr}}_{m}\) be the trace function from \(\mathbb {F}_{q}\) onto \(\mathbb {F}_{p}\). In this paper, let \(D=\{(x_{1},x_{2},\ldots ,x_{t}) \in \mathbb {F}_{q}^{t}\setminus \{(0,0,\ldots ,0)\} : {\mathrm {Tr}}_{m}(x_{1}+x_{2}+\cdots +x_{t})=0\},\) we define a p-ary linear code \(\mathcal {C}_{D}\) by
$$\begin{aligned} \mathcal {C}_{D}=\{\mathbf {c}(a_{1},a_{2},\ldots ,a_{t}) : (a_{1},a_{2},\ldots ,a_{t})\in \mathbb {F}^{t}_{q}\}, \end{aligned}$$
where
$$\begin{aligned} \mathbf {c}(a_{1},a_{2},\ldots ,a_{t})=({\mathrm {Tr}}_{m}(a_{1}x^{2}_{1}+a_{2}x^{2}_{2}+\cdots +a_{t}x^{2}_{t}))_{(x_{1},x_{2},\ldots ,x_{t}) \in D}. \end{aligned}$$
We shall present the complete weight enumerators of the linear codes \(\mathcal {C}_{D}\) and give several classes of linear codes with a few weights. This paper generalizes the results of Yang and Yao (Des Codes Cryptogr, 2016).
  相似文献   

14.
Let \(\mathcal Lf(x)=-\Delta f (x)+V(x)f(x)\), V?≥?0, \(V\in L^1_{loc}(\mathbb R^d)\), be a non-negative self-adjoint Schrödinger operator on \(\mathbb R^d\). We say that an L 1-function f is an element of the Hardy space \(H^1_{\mathcal L}\) if the maximal function
$ \mathcal M_{\mathcal L} f(x)=\sup\limits_{t>0}|e^{-t\mathcal L} f(x)| $
belongs to \(L^1(\mathbb R^d)\). We prove that under certain assumptions on V the space \(H^1_{\mathcal L}\) is also characterized by the Riesz transforms \(R_j=\frac{\partial}{\partial x_j}\mathcal L^{-1\slash 2}\), j?=?1,...,d, associated with \(\mathcal L\). As an example of such a potential V one can take any V?≥?0, \(V\in L^1_{loc}\), in one dimension.
  相似文献   

15.
We consider the problem
$$\begin{aligned} -\Delta u+\left( V_{\infty }+V(x)\right) u=|u|^{p-2}u,\quad u\in H_{0} ^{1}(\Omega ), \end{aligned}$$
where \(\Omega \) is either \(\mathbb {R}^{N}\) or a smooth domain in \(\mathbb {R} ^{N}\) with unbounded boundary, \(N\ge 3,\) \(V_{\infty }>0,\) \(V\in \mathcal {C} ^{0}(\mathbb {R}^{N}),\) \(\inf _{\mathbb {R}^{N}}V>-V_{\infty }\) and \(2<p<\frac{2N}{N-2}\). We assume V is periodic in the first m variables, and decays exponentially to zero in the remaining ones. We also assume that \(\Omega \) is periodic in the first m variables and has bounded complement in the other ones. Then, assuming that \(\Omega \) and V are invariant under some suitable group of symmetries on the last \(N-m\) coordinates of \(\mathbb {R}^{N}\), we establish existence and multiplicity of sign-changing solutions to this problem. We show that, under suitable assumptions, there is a combined effect of the number of periodic variables and the symmetries of the domain on the number of sign-changing solutions to this problem. This number is at least \(m+1\)
  相似文献   

16.
We consider the stochastic differential equation (SDE) of the form
$$\begin{array}{@{}rcl@{}} \left\{\begin{array}{rcl} dX^ x(t) &=& \sigma(X(t-)) dL(t) \\ X^ x(0)&=&x,\quad x\in{\mathbb{R}}^ d, \end{array}\right. \end{array} $$
where \(\sigma :{\mathbb {R}}^ d\to {\mathbb {R}}^ d\) is globally Lipschitz continuous and L={L(t):t≥0} is a Lévy process. Under this condition on σ it is well known that the above problem has a unique solution X. Let \((\mathcal {P}_{t})_{t\ge 0}\) be the Markovian semigroup associated to X defined by \(\left ({\mathcal {P}}_{t} f\right ) (x) := \mathbb {E} \left [ f(X^ x(t))\right ]\), t≥0, \(x\in {\mathbb {R}}^{d}\), \(f\in \mathcal {B}_{b}({\mathbb {R}}^{d})\). Let B be a pseudo–differential operator characterized by its symbol q. Fix \(\rho \in \mathbb {R}\). In this article we investigate under which conditions on σ, L and q there exist two constants γ>0 and C>0 such that
$$\left| B {\mathcal{P}}_{t} u \right|_{H^{\rho}_{2}} \le C \, t^{-\gamma} \,\left| u \right|_{H^{\rho}_{2}}, \quad \forall u \in {H^{\rho}_{2}}(\mathbb{R}^{d} ),\, t>0. $$
  相似文献   

17.
We give explicit analytic criteria for two problems associated with the Schrödinger operator H=-Δ+Q on L2(? n ) where QD’(? n ) is an arbitrary real- or complex-valued potential.
First, we obtain necessary and sufficient conditions on Q so that the quadratic form \(\langle{Q}\cdot,\ \cdot\rangle\) has zero relative bound with respect to the Laplacian. For QL1loc(? n ), this property can be expressed in the form of the integral inequality:
$\left\vert\int_{\mathbb{R}^n} |u(x)|^2 Q(x) dx \right\vert\leq\epsilon\| \nabla u \|^2_{L^2(\mathbb{R}^n)} + C(\epsilon) \|u \|^2_{L^2(\mathbb{R}^n)}, \quad\forall u \in C^{\infty}_0(\mathbb{R}^n),$
for an arbitrarily small ε>0 and some C(ε)>0. One of the major steps here is the reduction to a similar inequality with nonnegative function \(|\nabla(1-\Delta)^{-1} Q|^2 + |(1-\Delta)^{-1} Q|\) in place of Q. This provides a complete solution to the infinitesimal form boundedness problem for the Schrödinger operator, and leads to new broad classes of admissible distributional potentials Q, which extend the usual L p and Kato classes, as well as those based on the well-known conditions of Fefferman–Phong and Chang–Wilson–Wolff.
Secondly, we characterize Trudinger’s subordination property where C(ε) in the above inequality is subject to the condition C(ε)≤cε(β>0) as ε→+0. Such quadratic form inequalities can be understood entirely in the framework of Morrey–Campanato spaces, using mean oscillations of \(\nabla(1-\Delta)^{-1}Q\) and \((1-\Delta)^{-1}Q\) on balls or cubes. A version of this condition where ε∈(0,+∞) is equivalent to the multiplicative inequality:
$\left\vert\int_{\mathbb{R}^n} |u(x)|^2Q(x)dx\right\vert\leq{C}\|\nabla{u}\|^{2p}_{L^2(\mathbb{R}^n)}\|u\|^{2(1-p)}_{L^2(\mathbb{R}^n)},\quad\forall{u}\in{C}^\infty_0(\mathbb{R}^n),$
with \(p=\frac\beta{1 + \beta}\in(0,1)\). We show that this inequality holds if and only if \(\nabla\Delta^{-1} Q \in{BMO}(\mathbb{R}^n)\) if \(p=\frac{1}{2}\). For \(0 < p < \frac{1}{2}\), it is valid whenever \(\nabla\Delta^{-1}Q\) is Hölder-continuous of order 1-2p, or respectively lies in the Morrey space \(\mathcal{L}^{2,\lambda}\) with λ=n+2-4p if \(\frac{1}{2} < p < 1\). As a consequence, we characterize completely the class of those Q which satisfy an analogous multiplicative inequality of Nash’s type, with \(\|u\|_{L^1(\mathbb{R}^n)}\) in placeof \(\|u\|_{L^2(\mathbb{R}^n)}\).
These results are intimately connected with spectral theory and dynamics of the Schrödinger operator, and elliptic PDE theory.  相似文献   

18.
In the context of continuous logic, this paper axiomatizes both the class \(\mathcal {C}\) of lattice-ordered groups isomorphic to C(X) for X compact and the subclass \(\mathcal {C}^+\) of structures existentially closed in \(\mathcal {C}\); shows that the theory of \(\mathcal {C}^+\) is \(\aleph _0\)-categorical and admits elimination of quantifiers; establishes a Nullstellensatz for \(\mathcal {C}\) and \(\mathcal {C}^+\); shows that \(C(X)\in \mathcal {C}\) has a prime-model extension in \(\mathcal {C}^+\) just in case X is Boolean; and proves that in a sense relevant to continuous logic, positive formulas admit in \(\mathcal {C}^+\) elimination of quantifiers to positive formulas.  相似文献   

19.
We study nonlinear elliptic equations in divergence form
$$\text {div }{\mathcal A}(x,Du)=\text {div } G.$$
When \({\mathcal A}\) has linear growth in D u, and assuming that \(x\mapsto {\mathcal A}(x,\xi )\) enjoys \(B^{\alpha }_{\frac {n}\alpha , q}\) smoothness, local well-posedness is found in \(B^{\alpha }_{p,q}\) for certain values of \(p\in [2,\frac {n}{\alpha })\) and \(q\in [1,\infty ]\). In the particular case \({\mathcal A}(x,\xi )=A(x)\xi \), G = 0 and \(A\in B^{\alpha }_{\frac {n}\alpha ,q}\), \(1\leq q\leq \infty \), we obtain \(Du\in B^{\alpha }_{p,q}\) for each \(p<\frac {n}\alpha \). Our main tool in the proof is a more general result, that holds also if \({\mathcal A}\) has growth s?1 in D u, 2 ≤ sn, and asserts local well-posedness in L q for each q > s, provided that \(x\mapsto {\mathcal A}(x,\xi )\) satisfies a locally uniform VMO condition.
  相似文献   

20.
Let \(\mathcal {F}_{0}=\{f_{i}\}_{i\in \mathbb {I}_{n_{0}}}\) be a finite sequence of vectors in \(\mathbb {C}^{d}\) and let \(\mathbf {a}=(a_{i})_{i\in \mathbb {I}_{k}}\) be a finite sequence of positive numbers, where \(\mathbb {I}_{n}=\{1,\ldots , n\}\) for \(n\in \mathbb {N}\). We consider the completions of \(\mathcal {F}_{0}\) of the form \(\mathcal {F}=(\mathcal {F}_{0},\mathcal {G})\) obtained by appending a sequence \(\mathcal {G}=\{g_{i}\}_{i\in \mathbb {I}_{k}}\) of vectors in \(\mathbb {C}^{d}\) such that ∥g i 2 = a i for \(i\in \mathbb {I}_{k}\), and endow the set of completions with the metric \(d(\mathcal {F},\tilde {\mathcal {F}}) =\max \{ \,\|g_{i}-\tilde {g}_{i}\|: \ i\in \mathbb {I}_{k}\}\) where \(\tilde {\mathcal {F}}=(\mathcal {F}_{0},\,\tilde {\mathcal {G}})\). In this context we show that local minimizers on the set of completions of a convex potential P φ , induced by a strictly convex function φ, are also global minimizers. In case that φ(x) = x 2 then P φ is the so-called frame potential introduced by Benedetto and Fickus, and our work generalizes several well known results for this potential. We show that there is an intimate connection between frame completion problems with prescribed norms and frame operator distance (FOD) problems. We use this connection and our results to settle in the affirmative a generalized version of Strawn’s conjecture on the FOD.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号