首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
SrTiO3 thin films were prepared on a fused-quartz substrate by pulsed laser deposition (PLD). Dense and homogeneous films with a thickness of 260 nm were prepared. Optical constants (refractive index n and extinction coefficient k) were determined from the transmittance spectra using the envelope method. The optical band gap energy of the films was found to be 3.58 eV, higher than the 3.22 eV for bulk SrTiO3, attributable to the film stress exerted by the substrate. The dispersion relation of the refractive index vs. wavelength follows the single electronic oscillator model. The refractive index and the packing density for the PLD-prepared SrTiO3 thin films are higher than those for the SrTiO3 films prepared by physical vapor deposition, sol–gel and RF sputtering. Received: 18 March 2002 / Accepted: 7 October 2002 / Published online: 8 January 2003 RID="*" ID="*"Corresponding author. Fax: +86-25/359-5535, E-mail: mszhang@nju.edu.cn  相似文献   

2.
The fundamental characteristics of a continuous-wave high-power diode-pumped Tm3+, Ho3+-doped double-clad silica fibre laser are presented. A maximum output power of 5.2 W was measured and was generated at a slope efficiency of 42 (44)% with respect to the launched (absorbed) pump power. At the optimum length of 7 m (effL=2.9, where eff is the effective absorption coefficient of the fibre and L is the fibre length), the fibre laser output was measured to have a centre wavelength of 2105 nm and a line width of 20 nm. The centre wavelength of the emission was tunable over a 32-nm extent when 0.68<effL<3.28 or for a 6.2-m change in L. PACS 42.55.Wd; 42.55.Xi; 42.60.Lh; 42.60.Pk  相似文献   

3.
Ho3+–Yb3+ co-doped Y2O3 nanocrystals were synthesized by firing hydroxy carbonate precursors. Yb3+-concentration-dependent up-conversion properties of Ho3+ in Y2O3 nanocrystals have been investigated. The relative intensity of up-converted red emission increases more quickly than that of the green and the near-infrared ones with the enhancement of the concentration of Yb3+. It is believed that the energy process 5 S 2 (5F4) (Ho) + 5 I 7 (Ho) →5 I 6 (Ho)+5 F 5 (Ho) plays an important role in the population of the 5 F 5 level of Ho3+. The result indicates that the intensity ratio of the green emission to the red one can be tuned by changing the sensitizer concentration. PACS 78.55.-m  相似文献   

4.
The high efficient antireflective down-conversion Y2O3:Bi, Yb films have been prepared successfully on Si(100) substrates by pulsed laser deposition (PLD) method, Upon excitation of ultraviolet photon varying from 300 to 400 nm, near-infrared emission of Yb3+ was observed for the film, can be efficiently absorbed by silicon (Si) solar cell. Most interestingly, there is a very low average reflectivity 1.46% for the incident light from 300 to 1100 nm. To the best of our knowledge, this is the lowest reflectance for the down-conversion thin films prepared by cost efficient method. The surface topography of the high efficient antireflective films can be controllably tuned through the substrate template regulation by optimizing process parameters. Besides, the results showed that there is a close relationship between luminescent property and morphology of the film. With the change of the surface morphology, the intensity of Bi3+ and Yb3+ emission peaks increase first and then decrease. The obtained results demonstrate that this film can enhance the Si solar cell efficiency through light trapping and spectrum shifting.  相似文献   

5.
We have grown crystals Na0.4Y0.6F2.2:Ho3+ (NYF:Ho3+) by the Bridgman-Stockbarger method. The optical spectra and luminescence kinetics of NYF:Ho3+ crystals have been studied. Based on the analysis of low-temperature absorption spectra, we determine the structure of the Stark splitting of holmium levels in NYF:Ho3+ crystals. From absorption spectra examined at T = 300 K, we calculate absorption cross-section spectra and oscillator strengths of transitions from the ground state of holmium to excited multiplets. We show that the absorption spectra of NYF:Ho3+ crystals consist of broad bands that lie in the UV, visible, and near-IR ranges. The most intense bands are observed in the visible range, they correspond to transitions 5 I 8 → (5 F 1, 5 G 6) and 5 I 8 → (5 F 4, 5 S 2), and their maximal absorption cross sections are σabsmax (λ = 450.3 nm) = 1.16 × 10−20 cm2 and σabsmax (λ = 535.1 nm) = 0.9 × 10−20 cm2. The intensity parameters Ω t have been calculated by the Judd-Ofelt method taking into account 10, 12, and 20 transitions from the 5 I 8 ground state to excited multiplets. We show that, with an increasing number of transitions taken into account in the calculation, the parameters Ω t somewhat increase. For 20 transitions, we have obtained the following intensity parameters: Ω2 = 0.97 × 10−20, Ω4 = 1.74 × 10−20, and Ω6 = 1.15 × 10−20 cm2. With these parameters, we have calculated the probabilities of radiative transitions, the radiative lifetimes, and the branching ratios. The rates of multiphoton nonradiative transitions have been estimated. The luminescence decay kinetics from excited holmium levels 5 F 3 (5 F 4, 5 S 2) and 5 F 5 have been studied upon selective excitation in the range of 490 nm, and the lifetimes of these levels have been experimentally determined. We find that the calculated and experimental rates of radiative and nonradiative relaxation from excited holmium levels agree well with each other. We show that, upon pumping in the range of 490 nm, the multiplet (5 F 4, 5 S 2) is populated as a result of the radiative and nonradiative excitation relaxation from the 5 F 3 level, while the lower-lying 5 F 5 level is populated due to direct radiative transitions 5 F 3, 25 F 5, obviating the cascade scheme 5 F 3 → (5 F 4, 5 S 2) ↝ 5 F 5. We conclude that NYF:Ho3+ crystals are processable; admit doping by holmium in high concentrations (up to 100%); and, with respect to all their radiative characteristics, can be considered as potential active media for solid-state continuously tunable lasers in the IR and visible ranges.  相似文献   

6.
Biocompatible upconversion nanoparticles with multifunctional properties can serve as potential nanoprobes for multimodal imaging. Herein, we report an upconversion nanocrystal based on lanthanum fluoride which is developed to address the imaging modalities, upconversion luminescence imaging and magnetic resonance imaging (MRI). Lanthanide ions (Yb3+ and Ho3+) doped LaF3 nanocrystals (LaF3 Yb3+/Ho3+) are fabricated through a rapid microwave-assisted synthesis. The hexagonal phase LaF3 nanocrystals exhibit nearly spherical morphology with average diameter of 9.8 nm. The inductively coupled plasma mass spectrometry (ICP-MS) analysis estimated the doping concentration of Yb3+ and Ho3+ as 3.99 and 0.41%, respectively. The nanocrystals show upconversion luminescence when irradiated with near-infrared (NIR) photons of wavelength 980 nm. The emission spectrum consists of bands centred at 542, 645 and 658 nm. The stronger green emission at 542 nm and the weak red emissions at 645 and 658 nm are assigned to 5S2 → 5I8 and 5F5 → 5I8 transitions of Ho3+, respectively. The pump power dependence of luminescence intensity confirmed the two-photon upconversion process. The nanocrystals exhibit paramagnetism due to the presence of lanthanide ion dopant Ho3+ and the magnetization is 19.81 emu/g at room temperature. The nanocrystals exhibit a longitudinal relaxivity (r 1) of 0.12 s?1 mM?1 and transverse relaxivity (r 2) of 28.18 s?1 mM?1, which makes the system suitable for developing T2 MRI contrast agents based on holmium. The LaF3 Yb3+/Ho3+ nanocrystals are surface modified by PEGylation to improve biocompatibility and enhance further functionalisation. The PEGylated nanocrystals are found to be non-toxic up to 50 μg/mL for 48 h of incubation, which is confirmed by the MTT assay as well as morphological studies in HeLa cells. The upconversion luminescence and magnetism together with biocompatibility enables the adaptability of the present system as a nanoprobe for potential bimodal imaging.  相似文献   

7.
The high-resolution spectra of LiYF4 and LiLuF4 crystals doped with holmium are studied. It is shown that the weak satellites of some principal lines observed in the optical spectra belong to Ho3+-Ho3+ pair centers. The role played by local crystal-field distortions in the formation of the spectrum of pair centers is verified experimentally.  相似文献   

8.
Laser-polarimetric technique with the shot-noise-limited polarimetric sensitivity is used to study magnetic ac-susceptibility in holmium doped LiYF4 crystals in the range of Zeeman energies comparable with that of the hyperfine interaction in Ho3+ ions. Specific features of optical methods of magnetic measurements, the experimental setup, and results of measurements are discussed. Polarimetric sensitivity of the setup (~10?8 rad) allowed us to measure the ac-susceptibility of LiYF4 single crystals containing 0.1–0.3 mol % of impurity Ho3+ ions with the signal-to-noise ratio exceeding 102. The obtained field-strength and frequency dependences of the ac-susceptibility show that the resonant peaks of the susceptibility mainly result from cross-relaxation transitions between the electronic-nuclear sublevels of Ho3+ ions.  相似文献   

9.
The mechanism of the upconversion processes in Y6O5F8: 2%Er3+/X%Yb3+ (X = 3, 10, 20) microtubes has been explored. The luminescent properties of the as prepared sample is investigated by utilizing up- /downconversion, decay and time resolve spectra. The results indicate that the red and green emission are clearly competitive depending on the Yb3+ concentration. High Yb3+ concentration induces the enhancement of the energy-back-transfer (EBT), process, which leads to the quenching of green emission and enhances the red emission. So it is possible to utilize the temporal evolutions of emission bands to deeply understand the color change UC mechanisms.  相似文献   

10.
Thermal quenching of interconfigurational 5d-4f luminescence of Er3+ and Tm3+ ions in BaY2F8 crystals is studied in the temperature range of 330–790 K. The quenching temperatures are ~575 and ~550 K for Er3+ and Tm3+, respectively. It is shown that quenching of 5d-4f luminescence of Tm3+ ions is caused by thermally stimulated ionization of 5d electrons to the conduction band.  相似文献   

11.
We report the orange-to-blue and infrared-(IR)-to-blue wavelengths upconversion luminescence in Pr3+:BaY2F8 crystals. Mechanism of the orange light upconversion into blue 3P0 state emission was confirmed to be energy transfer between two Pr3+ ions in the 1D2 state. IR-to-blue upconversion has only been observed under two different color IR pumping. The first resonant step was the 3H41G4 ground state absorption transition, and the second resonant transition was the excited state absorption from the 1G4 to 1I6 and 3PJ levels. A comparison of the efficiency of the IR-to-blue upconversion in several praseodymium activated host is presented and discussed. A model of the IR pumped upconversion praseodymium blue laser is presented and the population inversion conditions are calculated.  相似文献   

12.
LiSmxMn2–xO4 samples were synthesized via co-precipitation technique. The structural properties of the synthesized materials were studied using X-ray diffraction analysis and it confirmed the cubic spinel structure for all the compounds. The lattice parameter of LiMn2O4 was observed to be 8.2347 Ǻ and it decreased with Sm3+ concentration, due to the shrinkage in cell volume aided by higher binding energy between Sm-O bond. The SEM micrographs were analyzed using Image processing software (Image-J) to ascertain the pore and grain properties. The microwave synthesis had been observed to control the bulk grain formation and had yielded lesser porous and nanoparticles. The particle size distributions obtained through photocross correlation laser diffraction analysis had shown that LiMn2O4 with 60 nm and Sm-doped compounds with ∼30 nm, respectively. The cyclic voltammetry studies had revealed the decrease in electrocatalytic behavior in the initial cycle for compounds doped with Sm3+ ion. The initial capacities of LiMn2O4, LiSm0.05Mn1.95O4 and LiSm0.10Mn1.90O4 substituted compounds were observed to be 134.87 mAhg−1, 132.22 mAhg−1 and 126.41 mAhg−1, respectively. The cells were simulated using 1D model namely Dualfoil5.1 program. The simulated results coincide well with the measured results. The cycle life studies reveal 93% capacity retention of samarium-0.05-doped samples when compared with 78.4% of the LiMn2O4.  相似文献   

13.
This paper reports on the photoluminescence (PL) and time-resolved properties of Ce3+, Eu3+, and Tb3+ in novel LiSr4(BO3)3 powder phosphors. Ce3+ shows an emission band peaking at 420 nm under 350-nm UV excitation. Energy transfer from Ce3+ to Mn2+ takes place in the co-doped samples. Eu3+ shows red emission under near UV excitation. LiSr4(BO3)3:Eu3+ phosphor could be a suitable candidate for phosphor-converted solid state lighting. The luminescence lifetime is 2.13 ms for Eu3+ in LiSr4(BO3)3:0.001Eu3+. As Eu3+ concentration increasing, the decay curves deviate from exponential behavior. Tb3+ shows the strongest 5D47 F5 emission line at 540 nm. Decay curves of 5D47 F5 and 5D37 F5 emission with different Tb3+ concentrations were also measured. Cross-relaxation process is discussed based on the decay curves.  相似文献   

14.
The short-wave transmission spectrum of Na0.4Lu0.6F2.2 with the visible/ultraviolet transmission edge of 8 eV was studied. Absorption spectra of the 4f—5d transitions of the Ce3+ ion in the region of 4–8 eV were studied in Ce3+-doped Na0.4Lu0.6F2.2 single crystals. Luminescence spectra in the ultraviolet and visible spectral regions, luminescence decay kinetics and reflection and luminescence excitation spectra in the visible/ultraviolet and ultraviolet regions (4–20 eV) were investigated at helium and room temperatures.  相似文献   

15.
The electrophysical properties and phase composition of thin lead titanate films prepared on various substrates by layer-by-layer magnetron sputtering of metals followed by annealing have been studied. The main parameters of the metal-ferroelectric film-metal multilayer structures, namely, the spontaneous polarization, coercive field, and permittivity, were studied for various substrate types and electrode materials. The conditions favorable for the formation of PbTiO3 films that are similar in stoichiometry and phase composition were established.  相似文献   

16.
We report the results of an analytical investigation on the bronze alloys of the Porta del Paradiso by Lorenzo Ghiberti using a portable X-ray fluorescence instrument. The study was carried out on five panels of the bronze artwork. It provided information on the artist’s selection of the sculptural alloys and on some manufacturing details of interest for understanding the development of the art foundry during the early Renaissance. PACS 81.05.Bx; 81.70.Jb; 82.80.Ej  相似文献   

17.
MgO powders subjected to Q-switched laser pulses in water were characterized by X-ray/electron diffraction and optical spectroscopy to have a significant optical property change with accompanied transformation into the phase assemblages of periclase, brucite and liquid-crystalline lamella. The periclase nanoparticles tended to have {111} habit planes parallel to the basal layers of lamella and brucite flakes more or less rolled as fibers, ribbons or tubes. A significant internal compressive stress was built up for periclase and brucite but not the more flexible lamellar phase. The colloidal suspension containing the densified periclase nanoparticles within the rolled brucite/lamellae flakes showed UV–visible absorption corresponding to a minimum band gap of ca. 5 eV.  相似文献   

18.
A high-power diode -pumped Nd3+:YAl3(BO3)4 (Nd:YAB) laser emitting at 1338 nm is described. At the incident pump power of 9.8 W, as high as 734 mW of continuous-wave (CW) output power at 1338 nm is achieved. The slope efficiency with respect to the incident pump power was 9.0%. To the best of our knowledge, this is the first demonstration of such a laser system. The output power stability over 60 min is better than 2.6%. The laser beam quality M 2 factor is 1.21.  相似文献   

19.
The crystal of Nd3+:Sr6YSc(BO3)6 with dimensions of O 19×42 mm3 was grown by the Czochralski method. It’s spectral and laser properties have been investigated. The absorption cross section is 1.47×10-20 cm2 with a FWHM 12.0 nm at 807 nm, the emission cross section is 1.57×10-19 cm2 at 1060 nm, and the fluorescence lifetime is 76 μs at room temperature. The maximum laser output is 25.7 mJ at 1.06 μm pumped by a single Xenon flash lamp and the overall and average slope efficiencies are 0.12% and 0.09%, respectively. The laser energy threshold value is 1.28 J. PACS 42.55.Rz; 42.70.Hj; 78.20.-e  相似文献   

20.
YVO4:Yb3+,Er3+; YVO4:Yb3+,Tm3+; and YVO4:Yb3+,Er3+,Tm3+ were all synthesized via sol-gel method with a subsequent thermal treatment. Specifically, YVO4:Yb3+,Er3+,Tm3+ phosphors were prepared with different annealing temperatures to study the influence of temperature. The transmission electron microscope (TEM), scanning electron microscope (SEM), X-ray diffractometer (XRD), and photoluminescent (PL) spectrofluorometer were used to investigate the morphology, crystal structure, and up-conversion luminescent properties of all samples. In summary, all samples were granular-like nanoparticles and well crystallized with the same tetragonal phase as YVO4. Under the irradiation at 980 nm, YVO4:Yb3+,Er3+ phosphors can generate green emission at 525 and 553 nm and red emission at 657 nm, while YVO4:Yb3+,Tm3+ phosphors can generate blue emission at 476 nm, red emission at 648 nm, and near-infrared emission at 800 nm. Notably, YVO4:Yb3+,Er3+,Tm3+ samples can exhibit green emission, blue emission, red emission, and near-infrared emission at the same time, which might endow the as-prepared samples with potential applications in many fields, such as luminous paint, infrared detection, and biological label.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号