首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Within the Grassmannian U(2N)/U(N) × U(N) nonlinear σ-model representation of localization, one can study the low-energy dynamics of both a free and interacting electron gas. We study the crossover between these two fundamentally different physical problems. We show how the topological arguments for the exact quantization of the Hall conductance are extended to include the Coulomb interaction problem. We discuss dynamical scaling and make contact with the theory of variable range hopping.  相似文献   

2.
We establish a relation between Coulomb and oscillator systems on n-dimensional spheres and hyperboloids for n≥2. We show that, as in Euclidean space, the quasiradial equation for the (n+1)-dimensional Coulomb problem coincides with the 2n-dimensional quasiradial oscillator equation on spheres and hyperboloids. Using the solution of the Schrödinger equation for the oscillator system, we construct the energy spectrum and wave functions for the Coulomb problem.  相似文献   

3.
The seven and nine dimensional geometries associated with certain classes of supersymmetric AdS 3 and AdS 2 solutions of type IIB and D = 11 supergravity, respectively, have many similarities with Sasaki-Einstein geometry. We further elucidate their properties and also generalise them to higher odd dimensions by introducing a new class of complex geometries in 2n + 2 dimensions, specified by a Riemannian metric, a scalar field and a closed three-form, which admit a particular kind of Killing spinor. In particular, for n ≥ 3, we show that when the geometry in 2n + 2 dimensions is a cone we obtain a class of geometries in 2n + 1 dimensions, specified by a Riemannian metric, a scalar field and a closed two-form, which includes the seven and nine-dimensional geometries mentioned above when n = 3, 4, respectively. We also consider various ansätze for the geometries and construct infinite classes of explicit examples for all n.  相似文献   

4.
To make the gauge field theory foundation of the topological current of p-branes introduced in our previous work, we present a novel topological tensor current in SO(N) gauge field theory. This non-Abelian gauge field tensor current is the straightforward generalization of the Chern-Simons topological current of strings. By making use of the SO(N) gauge potential decomposition theory and the φ-mapping topological current theory, it is proved that the p-brane is created at every isolated zero of the Clifford vector field \(\overrightarrow{\phi }(x)\) and the charges carried by p-branes are topologically quantized and labelled by the winding number of the φ-mapping.  相似文献   

5.
We study a variational problem whose critical point determines the Reeb vector field for a Sasaki–Einstein manifold. This extends our previous work on Sasakian geometry by lifting the condition that the manifolds are toric. We show that the Einstein–Hilbert action, restricted to a space of Sasakian metrics on a link L in a Calabi–Yau cone X, is the volume functional, which in fact is a function on the space of Reeb vector fields. We relate this function both to the Duistermaat–Heckman formula and also to a limit of a certain equivariant index on X that counts holomorphic functions. Both formulae may be evaluated by localisation. This leads to a general formula for the volume function in terms of topological fixed point data. As a result we prove that the volume of a Sasaki–Einstein manifold, relative to that of the round sphere, is always an algebraic number. In complex dimension n = 3 these results provide, via AdS/CFT, the geometric counterpart of a–maximisation in four dimensional superconformal field theories. We also show that our variational problem dynamically sets to zero the Futaki invariant of the transverse space, the latter being an obstruction to the existence of a Kähler–Einstein metric.  相似文献   

6.
Associated to any (pseudo)-Riemannian manifold M of dimension n is an n + 1-dimensional noncommutative differential structure (Ω1, d) on the manifold, with the extra dimension encoding the classical Laplacian as a noncommutative ‘vector field’. We use the classical connection, Ricci tensor and Hodge Laplacian to construct (Ω2, d) and a natural noncommutative torsion free connection \({(\nabla,\sigma)}\) on Ω1. We show that its generalised braiding \({\sigma:\Omega^1\otimes\Omega^1\to \Omega^1\otimes\Omega^1}\) obeys the quantum Yang-Baxter or braid relations only when the original M is flat, i.e. their failure is governed by the Riemann curvature, and that σ 2 = id only when M is Einstein. We show that if M has a conformal Killing vector field τ then the cross product algebra \({C(M)\rtimes_\tau\mathbb{R}}\) viewed as a noncommutative analogue of \({M\times\mathbb{R}}\) has a natural n + 2-dimensional calculus extending Ω1 and a natural spacetime Laplacian now directly defined by the extra dimension. The case \({M=\mathbb{R}^3}\) recovers the Majid-Ruegg bicrossproduct flat spacetime model and the wave-operator used in its variable speed of light prediction, but now as an example of a general construction. As an application we construct the wave operator on a noncommutative Schwarzschild black hole and take a first look at its features. It appears that the infinite classical redshift/time dilation factor at the event horizon is made finite.  相似文献   

7.
Building on the symmetry classification of disordered fermions, we give a proof of the proposal by Kitaev, and others, for a “Bott clock” topological classification of free-fermion ground states of gapped systems with symmetries. Our approach differs from previous ones in that (i) we work in the standard framework of Hermitian quantum mechanics over the complex numbers, (ii) we directly formulate a mathematical model for ground states rather than spectrally flattened Hamiltonians, and (iii) we use homotopy-theoretic tools rather than K-theory. Key to our proof is a natural transformation that squares to the standard Bott map and relates the ground state of a d-dimensional system in symmetry class s to the ground state of a (d + 1)-dimensional system in symmetry class s + 1. This relation gives a new vantage point on topological insulators and superconductors.  相似文献   

8.
We study the massless field on \({D_n = D \cap \tfrac{1}{n} \mathbf{Z}^2}\), where \({D \subseteq \mathbf{R}^2}\) is a bounded domain with smooth boundary, with Hamiltonian \({\mathcal {H}(h) = \sum_{x \sim y} \mathcal {V}(h(x) - h(y))}\). The interaction \({\mathcal {V}}\) is assumed to be symmetric and uniformly convex. This is a general model for a (2 + 1)-dimensional effective interface where h represents the height. We take our boundary conditions to be a continuous perturbation of a macroscopic tilt: h(x) = n x · u + f(x) for \({x \in \partial D_n,\,u \in \mathbf{R}^2}\), and f : R 2R continuous. We prove that the fluctuations of linear functionals of h(x) about the tilt converge in the limit to a Gaussian free field on D, the standard Gaussian with respect to the weighted Dirichlet inner product \({(f,g)_\nabla^\beta = \int_D \sum_i \beta_i \partial_i f_i \partial_i g_i}\) for some explicit β = β(u). In a subsequent article, we will employ the tools developed here to resolve a conjecture of Sheffield that the zero contour lines of h are asymptotically described by SLE(4), a conformally invariant random curve.  相似文献   

9.
The mechanical meaning and the relationships among material constants in an n-dimensional isotropic elastic medium are discussed. The restrictions of the constitutive relations (Hooke’s law) to subspaces of lower dimension caused by the conditions that an m-dimensional strain state or an m-dimensional stress state (1 ≤ m < n) is realized in the medium. Both the terminology and the general idea of the mathematical construction are chosen by analogy with the case n = 3 and m = 2, which is well known in the classical plane problem of elasticity theory. The quintuples of elastic constants of the same medium that enter both the n-dimensional relations and the relations written out for any m-dimensional restriction are expressed in terms of one another. These expressions in terms of the known constants, for example, of a three-dimensional medium, i.e., the classical elastic constants, enable us to judge the material properties of this medium immersed in a space of larger dimension.  相似文献   

10.
Recently, the interest on theoretical and experimental studies of dynamic properties of the magnetic domain wall (MDW) of ferromagnetic thin films with disorder placed in an external magnetic field has increased. In order to study global and local measurable observables, we consider the (1 + 1)-dimensional model introduced by Buceta and Muraca [Physica A 390, 4192 (2011)], based on rules of evolution that describe the MDW avalanches. From the values of the roughness exponents, global ζ, local ζ loc, and spectral ζ s , obtained from the global interface width, height-difference correlation function and structure function, respectively, recent works have concluded that the universality classes should be analyzed in the context of the anomalous scaling theory. We show that the model is included in the group of systems with intrinsic anomalous scaling (ζ ? 1.5, ζ loc = ζ s ? 0.5), and that the surface of the MDW is multi-affine. With these results, we hope to establish in short term the scaling relations that verify the critical exponents of the model, including the dynamic exponent z, the exponents of the distributions of avalanche-size τ and -duration α, among others.  相似文献   

11.
Let ?n be n-dimensional Euclidean space and let M ? ?n be a smooth compact m-dimensional Riemannian manifold (without boundary) embedded in ?n. By a Brownian motion on M we mean a Markovian process whose transition semigroup is defined by the generator ?½ΔM, where ΔM stands for the Laplace-Beltrami operator on M (see, e.g., [2]). This note extends a series of papers in which a measure generated by a Brownian motion on M on the space of trajectories (with values in M) can be represented as the weak limit of measures on the space of trajectories in the ambient space ?n (see [7–10]). Namely, we claim that a sequence of diffusion processes on ?n which are Brownian motions with drift (in the direction of the manifold) with infinitely increasing modulus converges in distribution to a Brownian motion on the manifold.  相似文献   

12.
We consider a discrete scalar, quantum field theory based on a cubic 4-dimensional lattice. We mainly investigate a discrete scattering operator S(x 0,r) where x 0 and r are positive integers representing time and maximal total energy, respectively. The operator S(x 0,r) is used to define transition amplitudes which are then employed to compute transition probabilities. These probabilities are conditioned on the time-energy (x 0,r). In order to maintain total unit probability, the transition probabilities need to be reconditioned at each (x 0,r). This is roughly analogous to renormalization in standard quantum field theory, except no infinities or singularities are involved. We illustrate this theory with a simple scattering experiment involving a common interaction Hamiltonian. We briefly mention how discreteness of spacetime might be tested astronomically. Moreover, these tests may explain the existence of dark energy and dark matter.  相似文献   

13.
The Lambda-renormalized Einstein–Schrödinger theory is a modification of the original Einstein–Schrödinger theory in which a cosmological constant term is added to the Lagrangian, and it has been shown to closely approximate Einstein– Maxwell theory. Here we generalize this theory to non-Abelian fields by letting the fields be composed of d × d Hermitian matrices. The resulting theory incorporates the U(1) and SU(d) gauge terms of Einstein–Maxwell–Yang–Mills theory, and is invariant under U(1) and SU(d) gauge transformations. The special case where symmetric fields are multiples of the identity matrix closely approximates Einstein–Maxwell–Yang–Mills theory in that the extra terms in the field equations are < 10?13 of the usual terms for worst-case fields accessible to measurement. The theory contains a symmetric metric and Hermitian vector potential, and is easily coupled to the additional fields of Weinberg–Salam theory or flipped SU(5) GUT theory. We also consider the case where symmetric fields have small traceless parts, and show how this suggests a possible dark matter candidate.  相似文献   

14.
We continue our study of a generalization of the D-dimensional linearized Vasiliev higher-spin equations to include a tower of partially massless (PM) fields. We compute one-loop effective actions by evaluating zeta functions for both the “minimal” and “non-minimal” parity-even versions of the theory. Specifically, we compute the log-divergent part of the effective action in odd-dimensional Euclidean AdS spaces for D = 7 through 19 (dual to the a-type conformal anomaly of the dual boundary theory), and the finite part of the effective action in even-dimensional Euclidean AdS spaces for D = 4 through 8 (dual to the free energy on a sphere of the dual boundary theory). We pay special attention to the case D = 4, where module mixings occur in the dual field theory and subtlety arises in the one-loop computation. The results provide evidence that the theory is UV complete and one-loop exact, and we conjecture and provide evidence for a map between the inverse Newton’s constant of the partially massless higher-spin theory and the number of colors in the dual CFT.  相似文献   

15.
We consider a polymer with configuration modeled by the path of a Markov chain, interacting with a potential u + V n which the chain encounters when it visits a special state 0 at time n. The disorder (V n ) is a fixed realization of an i.i.d. sequence. The polymer is pinned, i.e. the chain spends a positive fraction of its time at state 0, when u exceeds a critical value. We assume that for the Markov chain in the absence of the potential, the probability of an excursion from 0 of length n has the form \({n^{-c}\varphi(n)}\) with c ≥  1 and φ slowly varying. Comparing to the corresponding annealed system, in which the V n are effectively replaced by a constant, it was shown in [1,4,13] that the quenched and annealed critical points differ at all temperatures for 3/2 < c < 2 and c > 2, but only at low temperatures for c < 3/2. For high temperatures and 3/2 < c < 2 we establish the exact order of the gap between critical points, as a function of temperature. For the borderline case c = 3/2 we show that the gap is positive provided \({\varphi(n) \to 0}\) as n → ∞, and for c > 3/2 with arbitrary temperature we provide an alternate proof of the result in [4] that the gap is positive, and extend it to c = 2.  相似文献   

16.
The multitude of excitations of the fractional quantum Hall state are very accurately understood, microscopically, as excitations of composite fermions across their Landau-like Λ levels. In particular, the dispersion of the composite fermion exciton, which is the lowest energy spin conserving neutral excitation, displays filling-factor-specific minima called “magnetoroton” minima. Simon and Halperin employed the Chern-Simons field theory of composite fermions [Phys. Rev. B 48, 17368 (1993)] to predict the magnetoroton minima positions. Recently, Golkar et al. [Phys. Rev. Lett. 117, 216403 (2016)] have modeled the neutral excitations as deformations of the composite fermion Fermi sea, which results in a prediction for the positions of the magnetoroton minima. Using methods of the microscopic composite fermion theory we calculate the positions of the roton minima for filling factors up to 5/11 along the sequence s/ (2s + 1) and find them to be in reasonably good agreement with both the Chern-Simons field theory of composite fermions and Golkar et al.’s theory. We also find that the positions of the roton minima are insensitive to the microscopic interaction in agreement with Golkar et al.’s theory. As a byproduct of our calculations, we obtain the charge and neutral gaps for the fully spin polarized states along the sequence s/ (2s ± 1) in the lowest Landau level and the n = 1 Landau level of graphene.  相似文献   

17.
Let F : [0, ∞) → [0, ∞) be a strictly increasing C 2 function with F(0) = 0. We unify the concepts of F-harmonic maps, minimal hypersurfaces, maximal spacelike hypersurfaces, and Yang-Mills Fields, and introduce F-Yang-Mills fields, F-degree, F-lower degree, and generalized Yang-Mills-Born-Infeld fields (with the plus sign or with the minus sign) on manifolds. When \({F(t)=t, \frac 1p(2t)^{\frac p2}, \sqrt{1+2t} -1,}\) and \({1-\sqrt{1-2t},}\) the F-Yang-Mills field becomes an ordinary Yang-Mills field, p-Yang-Mills field, a generalized Yang-Mills-Born-Infeld field with the plus sign, and a generalized Yang-Mills-Born-Infeld field with the minus sign on a manifold respectively. We also introduce the E F,g ?energy functional (resp. F-Yang-Mills functional) and derive the first variational formula of the E F,g ?energy functional (resp. F-Yang-Mills functional) with applications. In a more general frame, we use a unified method to study the stress-energy tensors that arise from calculating the rate of change of various functionals when the metric of the domain or base manifold is changed. These stress-energy tensors are naturally linked to F-conservation laws and yield monotonicity formulae, via the coarea formula and comparison theorems in Riemannian geometry. Whereas a “microscopic” approach to some of these monotonicity formulae leads to celebrated blow-up techniques and regularity theory in geometric measure theory, a “macroscopic” version of these monotonicity inequalities enables us to derive some Liouville type results and vanishing theorems for p?forms with values in vector bundles, and to investigate constant Dirichlet boundary value problems for 1-forms. In particular, we obtain Liouville theorems for F?harmonic maps (which include harmonic maps, p-harmonic maps, exponentially harmonic maps, minimal graphs and maximal space-like hypersurfaces, etc.), F?Yang-Mills fields, extended Born-Infeld fields, and generalized Yang-Mills-Born-Infeld fields (with the plus sign and with the minus sign) on manifolds, etc. As another consequence, we obtain the unique constant solution of the constant Dirichlet boundary value problems on starlike domains for vector bundle-valued 1-forms satisfying an F-conservation law, generalizing and refining the work of Karcher and Wood on harmonic maps. We also obtain generalized Chern type results for constant mean curvature type equations for p?forms on \({\mathbb{R}^m}\) and on manifolds M with the global doubling property by a different approach. The case p = 0 and \({M=\mathbb{R}^m}\) is due to Chern.  相似文献   

18.
The paper is devoted to the investigation, using the method of Cartan–Laptev, of the differential-geometric structure associated with a Lagrangian L, depending on a function z of the variables t, x 1,...,x n and its partial derivatives. Lagrangians of this kind are considered in theoretical physics (in field theory). Here t is interpreted as time, and x 1,...,x n as spatial variables. The state of the field is characterized by a function z(t, x 1,..., x n ) (a field function) satisfying the Euler equation, which corresponds to the variational problem for the action integral. In the present paper, the variables z(t, x 1,..., x n are regarded as adapted local coordinates of a bundle of general type M with n-dimensional fibers and 1-dimensional base (here the variable t is simultaneously a local coordinate on the base). If we agree to call t time, and a typical fiber an n-dimensional space, then M can be called the spatiotemporal bundle manifold. We consider the variables t, x 1,...,x n , z (i.e., the variables t, x 1,...,x n with the added variable z) as adapted local coordinates in the bundle H over the fibered base M. The Lagrangian L, which is a coefficient in the differential form of the variational action integral in the integrand, is a relative invariant given on the manifold J 1 H (the manifold of 1-jets of the bundle H). In the present paper, we construct a tensor with components Λ00, Λ0i , Λ ij ij = Λ ji ) which is generated by the fundamental object of the structure associated with the Lagrangian. This tensor is an invariant (with respect to admissible transformations the variables t, x 1,...,x n , z) analog of the energy-momentum tensor of the classical theory of physical fields. We construct an invariant I, a vector G i , and a bivalent tensor G jk generated by the Lagrangian. We also construct a relative invariant of E (in the paper, we call it the Euler relative invariant) such that the equation E = 0 is an invariant form of the Euler equation for the variational action integral. For this reason, a nonvariational interpretation of the Euler equation becomes possible. Moreover, we construct a connection in the principal bundle with base J 2 H (the variety of 2-jets of the bundle H) and with the structure group GL(n) generated by the structure associated with the Lagrangian.  相似文献   

19.
The hard disk model is a 2D Gibbsian process of particles interacting via pure hard core repulsion. At high particle density the model is believed to show orientational order, however, it is known not to exhibit positional order. Here we investigate to what extent particle positions may fluctuate. We consider a finite volume version of the model in a box of dimensions 2n ×  2n with arbitrary boundary configuration, and we show that the mean square displacement of particles near the center of the box is bounded from below by c log n. The result generalizes to a large class of models with fairly arbitrary interaction.  相似文献   

20.
Classical analysis and quantum-mechanical studies of the energy spectra of photoelectrons have been carried out for above-threshold ionization of atoms in a two-color laser field of the first and third (n = 3) harmonics. Numerical computations show that the boundary of direct ionization plateau corresponds to the electron energy E ≈ 3.56 \(U_{p_1 } \), while the boundary of rescattering plateau corresponds to the electron energy E ≈ 16.62 \(U_{p_1 } \) for the two-color field of fundamental frequency and its third harmonic with equal intensities, which is in accordance with the results of classical analysis. The results of classical analysis of the ionization processes in the field of first and nth harmonics of equal intensities show that the length of the direct ionization plateau and the length of the high-energy rescattering plateau decrease with increasing n. The results of numerical analysis of the ionization processes in the field of first and third (n = 3) harmonics correspond to the results of classical analysis carried out by the authors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号