首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The electrosynthesis of H2O2 in aqueous solutions (pH 1–9) of mineralized liquid and solid bio-wastes (exometabolites) for their processing in closed life-support systems was studied. It was shown that H2O2 can be obtained in these solutions by electrochemical reduction of oxygen in carbon black gas diffuse electrodes to concentrations of over 2 M with current efficiency 80%. The composition of the solution was found to affect the accumulation of H2O2 during the synthesis. The solutions can be concentrated further to 19 M H2O2. The results showed that the electrolytic method is promising for preparing H2O2 for closed life-support systems.  相似文献   

2.
Electroreduction of oxygen in gas-diffusion hydrophobized porous electrodes containing 8–10 wt % fluoroplastic, made of expanded natural graphite and acetylene black, in acidic (pH 0.6) and alkaline electrolytes was studied.  相似文献   

3.
This paper reports on the effects of the K2SO4, H2SO4, NaCl, HCl, and tetrabutylammonium bromide concentrations (0.01–0.0002 M) and the presence of formic, acetic, and butyric acids in the electrolyte on the kinetic characteristics of oxygen reduction to H2O2 in a carbon black gas-diffusion electrode (GDE) and on the H2O2 accumulation kinetics in electrolyte at current densities of 30–100 mA/cm2. The introduction of K2SO4 and tetrabutylammonium bromide in the electrolyte led to an increase in the transfer coefficient α and a decrease in the coefficients in the Tafel equation. The concentration and the current efficiency of H2O2 decreased with the salt to acid concentration ratio. The organic acids reduced the current efficiency of H2O2 and increased the electrode polarization. Peracids with a current efficiency of up to 0.27% and concentration of up to 7.5 mM were obtained. Solutions of H2O2 with concentrations of 0.6–3.3 M and current efficiencies of 17–75% were obtained at current densities of 30–100 mA/cm2 in electrolytes with salt and inorganic acid concentrations of 0.9–40 g/l and in the presence of organic acids.  相似文献   

4.
Electroreduction of oxygen to H2O2 on gas-diffusion air electrodes made of A 437-E acetylene black and its mixture with P 702 and P 268-E furnace blacks with various particle sizes and wettabilities by an alkaline aqueous electrolyte with 8 and 20 wt % polytetrafluoroethylene was studied.  相似文献   

5.
The influence exerted by the nature of cation of a supporting electrolyte and by the current density on the electroreduction of oxygen to hydrogen peroxide in acid K2SO4 solutions (pH 0.9–1.4) in gas-diffusion hydrophobized carbon black electrodes with varied electrolyte porosity was studied.  相似文献   

6.
7.
8.
The electrochemical reduction of oxygen at a porous flow-through electrode is described with emphasis on the effects of concentration, flow speed and surface area. On a packed bed copper electrode in sulfuric acid, it was found that oxygen undergoes a two electron reduction process giving rise to H2O2.  相似文献   

9.
Direct electrochemical formation of hydrogen peroxide(H2O2) from pure O2 and H2on cheap metal-free earth abundant catalysts has emerged as the highest atom-efficient and environmentally friendly reaction pathway and is therefore of great interest from an academic and industrial point of view. Very recently,novel metal-free mesoporous nitrogen-doped carbon catalysts have attracted large attention due to the unique reactivity and selectivity for the electrochemical hydrogen peroxide formation [1–3]. In this work,we provide deeper insights into the electrocatalytic activity, selectivity and durability of novel metal-free mesoporous nitrogen-doped carbon catalyst for the peroxide formation with a particular emphasis on the influence of experimental reaction parameters such as p H value and electrode potential for three different electrolytes. We used two independent approaches for the investigation of electrochemical hydrogen peroxide formation, namely rotating ring-disk electrode(RRDE) technique and photometric UV–VIS technique. Our electrochemical and photometric results clearly revealed a considerable peroxide formation activity as well as high catalyst durability for the metal-free nitrogen-doped carbon catalyst material in both acidic as well as neutral medium at the same electrode potential under ambient temperature and pressure. In addition, the obtained electrochemical reactivity and selectivity indicate that the mechanisms for the electrochemical formation and decomposition of peroxide are strongly dependent on the p H value and electrode potential.  相似文献   

10.
A novel approach to construct a amperometric biosensor for determination of H2O2 is described. Horseradish peroxidase (HRP) as a base enzyme was immobilized into the mixture of multiwalled carbon nanotubes (MWNTs) and polyvinyl butyral (PVB). Taking the classical hydroquinone as mediator, cyclic voltammetry and amperometric measurements were used to study and optimize the performance of the resulting H2O2 biosensor. The effect of the concentration of MWNTs, HRP, hydroquinone, solution pH, and the working potential of amperometry on the electrochemical biosensor was systematically studied. The results showed that the fabricated biosensor demonstrated significant electrocatalytic activity for the reduction of hydrogen peroxide with wide linear range from 0.000832 to 0.6 mM, and low detection limit 0.000167 mM (S/N = 3) with fast response time less than 8 s. The apparent Michaelis–Menten constant was determined to be 0.049 mM. Additionally, the biosensor exhibited high sensitivity, rapid response and good long-term stability.  相似文献   

11.
12.
Yang  Yang  Fu  Renzhong  Yuan  Jianjun  Wu  Shiyuan  Zhang  Jialiang  Wang  Haiying 《Mikrochimica acta》2015,182(13):2241-2249

We are presenting a sensor for hydrogen peroxide (H2O2) that is based on the use of a heterostructure composed of Pt nanoparticles (NPs) and carbon nanofibers (CNFs). High-density Pt NPs were homogeneously loaded onto a three-dimensional nanostructured CNF matrix and then deposited in a glassy carbon electrode (GCE). The resulting sensor synergizes the advantages of the conducting CNFs and the nanoparticle catalyst. The porous structure of the CNFs also favor the high-density immobilization of the NPs and the diffusion of water-soluble molecules, and thus assists the rapid catalytic oxidation of H2O2. If operated at a working voltage of −0.2 V (vs. Ag/AgCl), the modified GCE exhibits a linear response to H2O2 in the 5 μM to 15 mM concentration range (total analytical range: 5 μM to 100 mM), with a detection limit of 1.7 μM (at a signal-to-noise ratio of 3). The modified GCE is not interfered by species such as uric acid and glucose. Its good stability, high selectivity and good reproducibility make this electrode a valuable tool for inexpensive amperometric sensing of H2O2.

The Pt NPs/CNF heterostructure-based H2O2 sensor synergizes the advantages of both the conducting carbon nanofibers and the nanoparticle catalyst. The 3D structure of the nanofibers favor high density immobilization of the nanoparticles and penetration by water-soluble molecules, which assists the catalyic oxidation of H2O2. The sensor shows outstanding performance in terms of detection range, detection limit, response time, stability and selectivity.

  相似文献   

13.
We report on a novel hydrogen peroxide biosensor that was fabricated by the layer-by-layer deposition method. Thionine was first deposited on a glassy carbon electrode by two-step electropolymerization to form a positively charged surface. The negatively charged gold nanoparticles and positively charged horseradish peroxidase were then immobilized onto the electrode via electrostatic adsorption. The sequential deposition process was characterized using electrochemical impedance spectroscopy by monitoring the impedance change of the electrode surface during the construction process. The electrochemical behaviour of the modified electrode and its response to hydrogen peroxide were studied by cyclic voltammetry. The effects of the experimental variables on the amperometric determination of H2O2 such as solution pH and applied potential were investigated for optimum analytical performance. Under the optimized conditions, the biosensor exhibited linear response to H2O2 in the concentration ranges from 0.20 to 1.6?mM and 1.6 to 4.0?mM, with a detection limit of 0.067?mM (at an S/N of 3). In addition, the stability and reproducibility of this biosensor was also evaluated and gave satisfactory results.
Figure
A novel hydrogen peroxide biosensor was fabricated via layer-by-layer depositing approach. Thionine was first deposited on a glassy carbon electrode by electropolymerization to form a positively charged surface (PTH). Negatively charged gold nanoparticles (NPs) and positively charged horseradish peroxidase (HRP) were then immobilized onto the electrode via electrostatic adsorption.  相似文献   

14.
A biosensor with high stability was prepared to determine hydrogen peroxide (H2O2). This hydrogen peroxide biosensor was obtained by modifying glassy carbon electrode (GCE) with a composite film composed of gelatin-multiwalled carbon nanotubes. Catalase (Cat) was covalently immobilized into gelatin-multiwalled carbon nanotubes modified GCE through the well-known glutaraldehyde (GAD) chemistry in order to enhance the stability of electrodes. The enzyme sensor can achieve direct electrochemical response of hydrogen peroxide. The cyclic voltammograms at different scan rates, electrochemical impedance spectroscopy (EIS), and scanning electron microscope (SEM) tests indicate that the enzyme sensor performs positively on increasing permeability, reducing the electron transfer resistance, and improving the electrode performance. The linear response of standard curve for H2O2 is in the range of 0.2 to 5.0 mM with a correlation coefficient of 0.9972, and the detection limit of 0.001 mM. A high operational and storage stability is demonstrated for the biosensor. The peak potential at room temperature in two consecutive weeks stays almost consistent, and the enzyme activity is kept stable even after 30 days in further study.  相似文献   

15.
A glassy carbon electrode was modified with PdO-NiO composite nanofibers (PdO-NiO-NFs) and applied to the electrocatalytic reduction of hydrogen peroxide (H2O2). The PdO-NiO-NFs were synthesized by electrospinning and subsequent thermal treatment, and then characterized by scanning electron microscopy, energy dispersive X-ray spectroscopy, X-ray diffraction, and X-ray photoelectron spectroscopy. Factors such as the composition and fraction of nanofibers, and of the applied potential were also studied. The sensor exhibits high sensitivity for H2O2 (583.43 μA?·?mM?1?·?cm?2), a wide linear range (from 5.0 μM to 19 mM), a low detection limit (2.94 μM at an SNR of 3), good long term stability, and is resistant to fouling.
Figure
A glassy carbon electrode was modified with PdO-NiO composite nanofibers which were synthesized by electrospinning and subsequent thermal treatment. The sensor exhibited a wide linear range, high sensitivity, good stability and selectivity for the detection of hydrogen peroxide  相似文献   

16.
The development of a simple, efficient and sensitive sensor for dissolved oxygen is proposed using a novel type of porous carbon composite membrane/glassy carbon electrode based on the low-cost common filter paper by a simple method. The resulting device exhibited excellent electrocatalytic activities toward the oxygen reduction reaction. Scanning electron microscopy, transmission electron microscopy, X-ray photoelectron spectroscopy and electrochemical measurements demonstrated that the porous morphology and uniformly dispersed Fe3C nanoparticles of the PCCM play an important role in the oxygen reduction reaction. A linear response range from 2μmol/L up to 110 μmol/L and a detection limit of 1.4 μmol/L was obtained with this sensor. The repeatability of the proposed sensor, evaluated in terms of relative standard deviation, was 3.0%. The successful fabrication of PCCM/GC electrode may promote the development of new porous carbon oxygen reduction reaction material for the oxygen reduction sensor.  相似文献   

17.
A new ordered mesoporous carbon (OMC) composite modified electrode was fabricated for the first time. Binuclear cobalt phthalocyaninehexasulfonate sodium salt (bi-CoPc) can be adsorbed onto didodecyldimethylammonium bromide (DDAB)/OMC film by ion exchange. UV-vis spectroscopy, scanning electron microscopy (SEM) and electrochemical methods were used to characterize the composite film. The cyclic voltammograms demonstrate that the charge transfer of bi-CoPc is promoted by the presence of OMC. Further study indicated that bi-CoPc/DDAB/OMC film is the excellent electrocatalyst for the electrochemical reduction of oxygen in a neutral aqueous solution and hemoglobin (Hb) at lower concentrations. Additionally, as an amperometric 2-mercaptoethanol (2-ME) sensor, this modified electrode shows a wider linear range (2.5 × 10−6 to 1.4 × 10−4 M), high sensitivity (16.5 μA mM−1) and low detection limit of 0.6 μM (S/N = 3). All these confirm the fact that the new composite film may have wide potential applications in biofuel cells, biological and environmental sensors.  相似文献   

18.
In this paper, we developed an amperometric hydrogen peroxide (H2O2) sensor based on cobalt-containing calcined layered double hydroxide (Co CLDH). The electrocatalytic activity of the Co CLDH towards the determination of H2O2 showed a fast response and high sensitivity. Moreover, the sensor exhibited good reproducibility and long-term stability. The superior electrocatalytic response to H2O2 is mainly attributed to the large surface area, minimized diffusion resistance, and enhanced electron transfer of the synthesized Co CLDH. This method with good analytical performance, low cost, and straightforward preparation made this novel electrode material promising for the determination of trace H2O2 in beverages with high accuracy, demonstrating its potential for practical application.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号