首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background

Discovery of potent inhibitors of urease (jack bean) enzyme is the first step in the development of drugs against diseases caused by ureolytic enzyme.

Results

Thirty-two derivatives of barbituric acid as zwitterionic adducts of diethyl ammonium salts were synthesized. All synthesized compounds (4az and 5as) were screened for their in vitro inhibition potential against urease enzyme (jack bean urease). The compounds 4i (IC50 = 17.6 ± 0.23 µM) and 5l (IC50 = 17.2 ± 0.44 µM) were found to be the most active members of the series, and showed several fold more urease inhibition activity than the standard compound thiourea (IC50 = 21.2 ± 1.3 µM). Whereas, compounds 4ab, 4de, 4gh, 4j4r, 4x, 4z, 5b, 5e, 5k, 5n5q having IC50 values in the range of 22.7 ± 0.20 µM–43.8 ± 0.33 µM, were also found as potent urease inhibitors. Furthermore, Molecular Dynamics simulation and molecular docking studies were carried out to analyze the binding mode of barbituric acid derivatives using MOE. During MD simulation enol form is found to be more stable over its keto form due to their coordination with catalytic Nickel ion of Urease. Additionally, structural–activity relationship using automated docking method was applied where the compounds with high biological activity are deeply buried within the binding pocket of urease. As multiple hydrophilic crucial interactions with Ala169, KCX219, Asp362 and Ala366 stabilize the compound within the binding site, thus contributing greater activity.

Conclusions

This research study is useful for the discovery of economically, efficient viable new drug against infectious diseases.
Graphical abstract: STD. Thiourea (IC50 = 21.2 ± 1.3 µM)
  相似文献   

2.

Background

Most of the benzyladenine and furfuryladenine derivatives inhibit tumor/cancer cell growth; their toxicity is lesser than the compounds used for the treatment of cancer now-a-days. Many cytokinin derivatives are tested for anticancer activity.

Results

A series of transition metal complexes containing N6-benzyl/furfuryl aminopurines of formula [Mn(FAH)2(H2O)(Cl3)]2.Cl2(1), [Co(FAH)2(H2O)(Cl3)]2.Cl2(2), [Co(FAH)2(Cl4)]2 .[Co(FAH)2(H3O)(Cl3)].Cl2(3), [Ni(FAH)2(H2O)(Cl3)]2.Cl2. (H2O) (4), [Zn(BAH)Br3] (5) and [Cd2(BAH)2(μ-Br)4Br2]n(6) (where BAH and FAH benzyladeninium and furfuryladeninium cations respectively) have been synthesized and characterized. Crystal structures of (1-4) have similar distorted octahedral coordination geometry, while (5) and (6) have distorted tetrahedral geometry and octahedral geometries respectively. In (1-4) two halide ions and two cytokinin cations (BAH+/FAH+) are laterally coordinated to the metal ion. A water molecule and a halide ion are axially coordinated. But the coordination sphere of (5) consists of N7 coordinated benzyladeninium ion and three halide ions. The complex (6) is a coordination polymer bridged by bromide anions. A common notable feature in (1-4) is the presence of one or more lattice chloride anions. They help in a chain formation by N-H…Cl halide involving hydrogen bonding interactions in between the Hoogsteen site hydrogen.

Conclusions

The observed crystal structures emphasize the role of the halide ions in developing the supramolecular architectures by halide involving hydrogen bonding interactions. Also most of the reported cobalt cytokinin complexes possess tetrahedral coordination geometry, but some cobalt complexes have distorted octahedral coordination geometry, which are discussed and compared.
Graphical Abstract Supramolecular architectures of some coordination metal complexes of N6-benzyl/furfuryl adenine.
  相似文献   

3.

Background

In view of wide range of biological activities of oxazole, a new series of oxazole analogues was synthesized and its chemical structures were confirmed by spectral data (Proton/Carbon-NMR, IR, MS etc.). The synthesized oxazole derivatives were screened for their antimicrobial and antiproliferative activities.

Results and discussion

The antimicrobial activity was performed against selected fungal and bacterial strains using tube dilution method. The antiproliferative potential was evaluated against human colorectal carcinoma (HCT116) and oestrogen- positive human breast carcinoma (MCF7) cancer cell lines using Sulforhodamine B assay and, results were compared to standard drugs, 5-fluorouracil and tamoxifen, respectively.

Conclusion

The performed antimicrobial activity indicated that compounds 3, 5, 6, 8 and 14 showed promising activity against selected microbial species. Antiproliferative screening found compound 14 to be the most potent compound against HCT116 (IC50?=?71.8 µM), whereas Compound 6 was the most potent against MCF7 (IC50?=?74.1 µM). Further, the molecular docking study has been carried to find out the interaction between active oxazole compounds with CDK8 (HCT116) and ER-α (MCF7) proteins indicated that compound 14 and 6 showed good dock score with better potency within the ATP binding pocket and may be used as a lead for rational drug designing of the anticancer molecule.
  相似文献   

4.
Thermal treatment of three monobridged biscyclopentadienes (C5H5)R(C5H5) [R = C(CH3)2 (1), C(CH2)5 (2), Si(CH3)2 (3)] with Re2(CO)10 in refluxing mesitylene gave the corresponding complexes [(η 5-C5H4)2R][Re(CO)3]2 [R = C(CH3)2 (4), C(C5H10) (5), Si(CH3)2 (6)], which were separated by chromatography, and characterized by elemental analysis, IR, and 1H NMR spectroscopy. The molecular structures of complexes 5 and 6 were characterized by X-ray crystal diffraction analysis and show that both are monobridged bis(cyclopentadienyl)rhenium carbonyl complexes in which the molecule consists of two [(η 5-C5H4)Re(CO)3] moieties linked by a single bridge, in which each of the two Re(CO)3 units is coordinated to the cyclopentadienyl ring in an η 5 mode. All three of these monobridged bis(cyclopentadienyl)rhenium carbonyl complexes have good catalytic activities in Friedel–Crafts alkylation reactions.  相似文献   

5.
A series of six alkyl-substituted tetramethylcyclopentadienyl mononuclear metal carbonyl complexes [(η 5-C5Me4R)Re(CO)3] [R = allyl (1), i-Pr (2), n-butyl (3), t-butyl (4), benzyl (5), CH(CH2)4 (6)] have been synthesized by treating the corresponding ligands (C5Me4R) [R = allyl, i-Pr, n-butyl, t-butyl, benzyl, CH(CH2)4] with Re2(CO)10 in refluxing xylene. The six new complexes were characterized by elemental analysis, IR, 1H NMR and 13C NMR spectroscopy. The crystal structures of all six complexes were determined by X-ray crystal diffraction analysis, showing that they have similar molecular structures, being mononuclear carbonyl complexes. In each of these complexes, the Re atom is η 5 -coordinated to the cyclopentadienyl ring. Complexes 15 have significant catalytic activity in Friedel–Crafts reactions of aromatic compounds with alkylation reagents. Compared with traditional catalysts, these mononuclear rhenium carbonyl complexes have obvious advantages such as lower amounts of catalyst, mild reaction conditions and environmentally friendly chemistry.  相似文献   

6.

Background

An increased incidence of fungal infections, both invasive and superficial, has been witnessed over the last two decades. Candida species seem to be the main etiology of nosocomial fungal infections worldwide with Candida albicans, which is commensal in healthy individuals, accounting for the majority of invasive Candida infections with about 30-40% of mortality.

Results

New aromatic and heterocyclic esters 5a-k of 1-aryl-3-(1H-imidazol-1-yl)propan-1-ols 4a-d were successfully synthesized and evaluated for their anti-Candida potential. Compound 5a emerged as the most active congener among the newly synthesized compounds 5a-k with MIC value of 0.0833 μmol/mL as compared with fluconazole (MIC value >1.6325 μmol/mL). Additionally, molecular modeling studies were conducted on a set of anti-Candida albicans compounds.

Conclusion

The newly synthesized esters 5a-k showed more potent anti-Candida activities than fluconazole. Compounds 7 and 8 revealed significant anti-Candida albicans activity and were able to effectively satisfy the proposed pharmacophore geometry, using the energy accessible conformers (Econf?<?20 kcal/mol).
  相似文献   

7.
Tuberculosis is an air-borne disease, mostly affecting young adults in their productive years. Here, Ligand-based drug design approach yielded a series of 23 novel 6-(4-nitrophenoxy)-1H-imidazo[4,5-b]pyridine derivatives. The required building block of imidazopyridine was synthesized from commercially available 5,5-diaminopyridine-3-ol followed by four step sequence. Derivatives were prepared using various substituted aromatic aldehydes. All the synthesized analogues were characterized using NMR, Mass analysis and also screened for in vitro antitubercular activity against Mycobacterium tuberculosis (H37Rv). Four compounds, 5c (MIC-0.6 μmol/L); 5g (MIC-0.5 μmol/L); 5i (MIC-0.8 μmol/L); and 5u (MIC-0.7 μmol/L) were identified as potent analogues. Drug receptor interactions were studied with the help of ligand docking using maestro molecular modeling interphase, Schrodinger. Here, computational studies showed promising interaction with other residues with good score, which is novel finding than previously reported. So, these compounds may exhibit in vivo DprE1 inhibitory activity.
  相似文献   

8.
A series of novel N-(4-methyl-3-((4-(pyridin-3-yl)pyrimidin-2-yl)amino)phenyl)piperidine-4-carboxamide derivatives 10(af), 12(ac) and 14(ac) were synthesized and characterized by FTIR, 1H-NMR, mass spectral and elemental analysis. The efficacy of these derivatives to inhibit in vivo angiogenesis was evaluated using chick chorioallantoic membrane (CAM) model and their DNA cleavage abilities were evaluated after incubating with calf thymus DNA followed by gel electrophoresis. These novel piperidine analogues efficiently blocked the formation of blood vessels in vivo in CAM model and exhibited differential migration and band intensities in DNA binding/cleavage assays. Among the tested compounds 10a, 10b, 10c, 12b, 14b and 14c showed significant anti-angiogenic and DNA cleavage activities compared to their respective controls and the other derivatives used in this study. These observations suggest that the presence of electron donating and withdrawing groups at positions 2, 3 and 4 of the phenyl ring of the side chain may determine their potency and as anticancer agents by exerting both anti-angiogenic and cytotoxic effects
.
  相似文献   

9.

Background

The plant Alisma plantago-aquatica Linnaeus, which is widely distributed in southwest of China, is the main material of traditional Chinese medicine “Zexie”. It was used as folk medicine for immune-modulation, anti-tumor, anti-inflammatory and antibacterial. Previous chemical studies on A. plantago-aquatica reported the identification of triterpenes, diterpenes, sesquiterpenes, steroids, alkaloids and phenolic acid. Terpenes and phenolic acid were regard as major secondary metabolites from this medicine plant.

Results

A new phenolic acid, plantain A (1), along with four known compounds (25) were isolated and identified from A. plantago-aquatica by extensive chromatographic and spectrometric methods. In the present study, the levels of TNF-α, IL-1β, COX-2, PEG2 and TGF-β1 were increased in model group rats, whereas on treatment with the isolated compound (1 and 4) at 50 mg/kg, there was a significant decrease in the cytokine levels. Therefore, the anti-CNP effect of 1 and 4 may be related to their anti-inflammatory properties.

Conclusions

A new phenolic acid and four known phenolic compounds were isolated from A. plantago-aquatica. Moreover, compounds 1 and 4 shows significant anti-chronic prostatitis activity in rats.
  相似文献   

10.
The complex Rh(acac)(CO)[P(tBu)(CH2CH=CH2)2] (1) proved to be an efficient precatalyst for the regioselective hydrogenation of quinoline (Q) to 1,2,3,4-tetrahydroquinoline (THQ) under mild reaction conditions (125 °C and 4 atm H2). A kinetic study of this reaction led to the rate law:
$$ r \, = \{ K_{1} k_{2} /(1 \, + \, K_{1} {\text{H}}_{ 2} )\} [{\text{Rh}}][{\text{H}}_{ 2} ]^{2} $$
which becomes
$$ r \, = \, K_{1} k_{2} [{\text{Rh}}][{\text{H}}_{ 2} ]^{2} $$
at hydrogen pressures below 4 atm. The active catalytic species is the cationic complex {Rh(Q)2(CO)[P(tBu)(CH2CH=CH2)2]}+ (2). The mechanism involves the partial hydrogenation of one coordinated Q of (2) to yield a complex containing a 1,2-dihydroquinoline (DHQ) ligand, {Rh(DHQ)(Q)(CO)[P(tBu)(CH2CH=CH2)2]}+ (3), followed by hydrogenation of the DHQ ligand to give THQ and a coordinatively unsaturated species {Rh(Q)(CO)[P(tBu)(CH2CH=CH2)2]}+ (4); this reaction is considered to be the rate-determining step. Coordination of a new Q molecule to (4) regenerates the active species (2) and restarts the catalytic cycle.
  相似文献   

11.

Background

Sydnone is a heterocycle that exhibits remarkable pharmacological activities, including antimicrobial, anti-inflammatory, analgesic, antipyretic and antioxidant activities. Thiosemicarbazones are of compounds that contain the –NHCSNHN=C< linkage group and are considerable interest because they exhibit important chemical properties and potentially beneficial biological activities. Similarly, thiosemicarbazones having carbohydrate moieties also exhibit various significant biological activities.

Results

The compounds of 3-formyl-4-phenylsydnones were obtained by Vilsmeyer-Haack’s formylation reaction and were transformed into thiosemicarbazones by condensation reaction with N-(2,3,4,6-tetra-O-acetyl-β-d-glucopyranosyl)thiosemicarbazide. Reaction were performed in the presence glacial acetic acid as catalyst using microwave-assisted heating method. Reaction yields were 43?85 %. The antimicrobial activities of these thiosemicarbazones were screened in vitro by using agar well diffusion and MIC methods. Among these thiosemicarbazones, compounds 4k, 4l, 4m and 4n were more active against all tested bacterial strains, especially against S. epidermidis, B. subtilis and E. coli. The MIC values in these cases are 0.156, 0.156 and 0.313 μg/mL, respectively. All compounds showed weak to moderate antifungal activity against C. albicans and A. niger than nystatin (MIC = 0.156?0.625 μg/mL vs. MIC = 0.078 μg/mL of nystatin), and thiosemicarbazones 4l, 4m and 4n exhibited significant activity with MIC = 0.156 μg/mL. These compounds also had good antifungal activity against F. oxysporum similarly to nystatin (MIC = 0.156 μg/mL). Among the tested compounds having halogen group 4k, 4l, 4m and 4n showed highest activity against three strains of fungal organisms.

Conclusions

In summary, we have developed a clean and efficient methodology for the synthesis of novel thiosemicarbazone derivatives bearing sydnone ring and d-glucose moiety; the heterocyclic and monosaccharide system being connected via ?NH?C(=S)NH?N=C< linker using molecular modification approach. The methodology could be further extended and used for the synthesis of other thiosemicarbazones of biological importance. 4-Formyl-3-arylsydnone N-(2,3,4,6-tetra-O-acetyl-β-d-glucopyranosyl)thiosemicarbazones have been synthesized under microwave-assisted heating conditions. Almost all obtained compounds showed remarkable activities against the tested microorganisms. Among the tested compounds having halogen group 4k, 4l, 4m and 4n showed highest activity against all tested strains of bacterial and fungal organisms.
Graphical abstract:Synthesis and antibacterial and antifungal activities of N-(tetra-O-acetyl-β-D-glucopyranosyl)thiosemicarbazones of substituted 4-formylsydnones
  相似文献   

12.

Background

Zanthoxylum buesgenii is a shrub used in Sierra Leone as remedy to cure venereal diseases, arthritis, and rheumatism whereas leaves and barks are employed to treat leprosy and to relieve pain. In South West Region of Cameroon, the plant locally called "Mbem" by Lewoh-Lebang community, is orally given to patients as aphrodisiac decoction and to increase sperm count. Previous chemical studies on Zanthoxylum species reported the identification of lignans, coumarins, diterpenes, sesquiterpenes, steroids, alkaloids and benzopropanoids. Besides, structurally diverse compounds belonging to these classes of secondary metabolites have been reported as trypanocidal, antileishmanial, antimycobacterial and cytotoxic metabolites.

Results

We therefore investigated the alkaloidal constituents of Z. buesgenii. In the course of the study, two benzophenanthridines [1-methoxy-12-methyl-12,13-dihydro-[1,3]dioxolo[4',5':4,5]benzo[1,2-c]phenanthridine-2,13-diol (1) and isofagaridine (2)] were identified among them one new. Alongside, three known furoquinolines [maculine (3), kokusaginine (4) and teclearverdoornine (5)] were also obtained and their structures were established on the basis of their NMR data and by comparison with those previously reported. Furthermore, the cytotoxicities of metabolites (1-4) isolated in substantial amount were evaluated against a series of multidrugs-resistant cancer cell lines. While compounds 2-4 showed selective cytotoxicities, compound 1 displayed activities against all cancer cells.

Conclusions

The observed activities corroborate those previously reported on similar benzophenanthridine alkaloids indicating that compounds 1 and 2 can chemically be explored to develop other chemotherapeutic agents.
Graphical abstract Cytotoxic Benzophenanthridine and Furoquinoline Alkaloids from Zanthoxylum buesgenii (Rutaceae).
  相似文献   

13.

Background

The emergence of bacterial resistance is a major public health problem. It is essential to develop and synthesize new therapeutic agents with better activity. The mode of actions of certain newly developed antimicrobial agents, however, exhibited very limited effect in treating life threatening systemic infections. Therefore, the advancement of multi-potent and efficient antimicrobial agents is crucial to overcome the increased multi-drug resistance of bacteria and fungi. Cancer, which remains as one of the primary causes of deaths and is commonly treated by chemotherapeutic agents, is also in need of novel and efficacious agents to treat resistant cases. As such, a sequence of novel substituted benzamides was designed, synthesized and evaluated for their antimicrobial and anticancer activities.

Methodology

All synthesized compounds were characterized by IR, NMR, Mass and elemental analysis followed by in vitro antimicrobial studies against Gram-positive (Staphylococcus aureus), Gram-negative (Salmonella typhi and Klebsiella pneumoniae) bacterial and fungal (Candida albicans and Aspergillus niger) strains by the tube dilution method. The in vitro anticancer evaluation was carried out against the human colorectal carcinoma cell line (HCT116), using the Sulforhodamine B assay.

Results, discussion and conclusion

Compound W6 (MICsa, st, kp?=?5.19 µM) emerged as a significant antibacterial agent against all tested bacterial strains i.e. Gram-positive (S. aureus), Gram-negative (S. typhi, K. pneumoniae) while compound W1 (MICca, an?=?5.08 µM) was most potent against fungal strains (A. niger and C. albicans) and comparable to fluconazole (MIC?=?8.16 µM). The anticancer screening demonstrated that compound W17 (IC50?=?4.12 µM) was most potent amongst the synthesized  compounds and also more potent than the standard drug 5-FU (IC50?=?7.69 µM).
  相似文献   

14.
Tetra-β-nitro-substituted nickel phthalocyanine (TN-NiPc) and hollow phthalocyanine (TN-H2Pc) were synthesized and investigated as novel organic electrode materials for rechargeable lithium batteries. After the two H atoms in the center of TN-H2Pc were replaced with Ni atoms, the interactive force between the phthalocyanine rings was reduced, which resulted in a fluffy morphology for the TN-NiPc that was beneficial to the transition of Li+. As a result, better electrochemical properties and reversibility were observed in the TN-NiPc electrodes compared to the TN-H2Pc electrode. The capacity of TN-NiPc electrode was stable at about 280 mAh g?1 at 0.2 C after 250 cycles at several different current rates of 0.1, 0.2, 0.5, and 1 C. The TN-NiPc based cathode materials may provide new opportunities for organic, flexible, and stable secondary lithium batteries.
Graphical Abstract The TN-NiPc electrode shows better electrochemical properties than that of TN-H 2 Pc electrode, which is due to the strong hydrogen bond interaction and π-π interaction of TN-H 2 Pc molecules, resulting in more dense stacking degree of the phthalocyanine ring and restricting the transport of Li+ .
  相似文献   

15.

Background

One of the most popular techniques for cancer detection is the nuclear medicine technique. The present research focuses on Platelet-12-lipoxygenase (P-12-LOX) as a promising target for treating and radio-imaging tumor tissues. Curcumin was reported to inhibit this enzyme via binding to its active site.

Results

A novel curcumin derivative was successfully synthesized and characterized with yield of 74%. It was radiolabeled with the diagnostic radioisotope technetium-99m with 84% radiochemical yield and in vitro stability up to 6 h. The biodistribution studies in tumor bearing mice confirmed the high affinity predicted by the docking results with a free binding energy value of (ΔG ?50.10 kcal/mol) and affinity (13.64 pki) showing high accumulation in solid tumor with target/non-target ratio >6.

Conclusion

The newly synthesized curcumin derivative, as a result of a computational study on platelet-12 lipoxygenase, showed its excellent free binding energy (?G ?50.10 kcal/mol) and high affinity (13.64 pKi). It could be an excellent radio-imaging agent that targeting tumor cells via targeting of P-12-LOX.
Graphical abstract This novel curcumin derivative was successfully synthesized and radiolabeled with technetium-99m and biologically evaluated in tumor bearing mice that showed high accumulation in solid tumor with target/non-target ratio >6 confirming the affinity predicted by the docking results. Predicted binding mode of a new curcumin derivative in complex with 12-LOX active site. b Curcumin itself in the 12-LOX active site biological distribution of 99mTc-curcumin derivative complex in solid tumor bearing Albino mice
  相似文献   

16.
Thermal treatment of pyridine imines [C5H4N-2-C(H)=N-C6H4-R] [R = H (1), CH3 (2), OMe (3), CF3 (4), Cl (5), Br (6)] with Mo(CO)6 in refluxing toluene provided six novel mononuclear molybdenum carbonyl complexes of the type [(η2-2-C5H4N)CH=N(C6H4-4-R)]Mo(CO)4 [R = H (7); CH3 (8); OMe (9); CF3 (10); Cl (11); Br (12)]. All of these complexes were separated by chromatography and fully characterized by elemental analysis, IR, and NMR spectroscopy. The crystal structures of complexes 7, 8 and 10 were determined by X-ray crystal diffraction analysis. In addition, the catalytic performance of these complexes was also tested, and it was found that these complexes had obvious catalytic activity on Friedel–Crafts reactions of aromatic compounds with a variety of acylation reagents.  相似文献   

17.
The reactions of five dinuclear carbonyl complexes [(η 5-C5Me4R)Mo(CO)3]2 [R = allyl, n Bu, t Bu, Ph, Bz] with I2 in chloroform solution gave the corresponding mononuclear substituted tetramethylcyclopentadienyl molybdenum carbonyl complexes [(η 5-C5Me4R)MoI(CO)3] [R = allyl (1), n Bu (2), t Bu (3), Ph (4), Bz (5)]. The molecular structures of complexes 2, 3 and 5 were determined by X-ray diffraction analysis. The results show that the substituent in the ring can directly affect the Mo–I bond distances; the more sterically hindered the substituent, the longer the Mo–I bond. Friedel–Crafts reactions of aromatic compounds with a variety of alkylation reagents catalyzed by the complexes showed that all of these mononuclear molybdenum carbonyl complexes have catalytic activity in Friedel–Crafts alkylation reactions. Indeed, compared with traditional catalysts, these mononuclear metal carbonyl complexes have obvious advantages such as higher activities, mild reaction conditions, high selectivity, simple post-processing, and environmentally friendly chemistry.  相似文献   

18.
A series of 5,6-fused ring cyclopentadienyl tricarbonyl manganese and rhenium complexes, [M(CO)3{η 5-1,2-C5H3(1,4-(R)2N2C2}] (2a3d) were isolated by employing an off-metal ring closure route. Reacting thallium cyclopentadienide (Cp) salts (1ad) with [MBr(CO)5] (M = Mn, Re) provided pyridazyl complexes (2a3d) in high yield (75–99 %). Spectroscopic characterization (NMR, IR, MS) confirmed the identity of the desired organometallic pyridazines. The off-metal synthetic pathway employed did improve upon the isolation of these complexes as compared to previously reported routes. The molecular and electronic structure of complexes 2a3d and their optimal energy structures have been characterized with quantum chemistry calculations. Vibrational frequencies calculated were compared to their experimental counterparts. The excited state calculations predict that the dominant low-energy transition involves a ligand-to-metal charge transfer.  相似文献   

19.
Oxidative addition of Br2 to [Mn(CO)5]? leads to the formation of [(CO)4MnBr], followed by the ligand exchange of bromide to [S,Se-C6H3-4-Me] 2 2? to form complex (CO)3Mn (µ-? 4-SC6H3-4-(CH3)Se-SeC6H3-4-(CH3)S)Mn(CO)3 (1). A new five-coordinate complex [(CO)3Mn(-S,-Se-C6H3-4-CH3)]? (2) can be synthesized through two different routes: (a) oxidative addition of diselenide [HS,Se-C6H3-4-Me]2 to the [Mn(CO)5]? followed by deprotonation and ligand dissociation to generate complex 2; (b) reduction of diselenide bonds of complex 1 by [BH4]? to produce 2. Drop-wise addition of HBF4·OEt2 at 0 °C results in the formation of complex 1. The X-ray analysis shows that complex 2 has relative short Mn–Se and Mn–S bond distances compare to the published structures of cis-[(CO)4Mn(EPh)2]? (E = S and Se; Liaw et al. in J. Chin. Chem. Soc. 43:427–431, 1996; Liaw et al. in Inorg. Chem. 35:2530, 1996). Interestingly, exposure of the coordinated unsaturated complex 2 under CO(g) atmosphere resulted in complex cis-[(CO)4Mn(-S,-Se-C6H3-4-Me)]? (3) being formed. After purging the solution of complex 3 with N2, it was reconverted completely back to complex 2; this observation was characterized by FTIR. The cyclic voltammetry scan of complex 2 shows a quasi-reversible redox couple with E 1/2 = ?1.94 V and I pa/I pc = 0.68. Ligand [HS, Se-C6H3-4-CH3]2 and complexes 1 and 2 are all characterized by IR, UV–Vis, NMR, EA and X-ray single crystal diffraction.  相似文献   

20.
Cis-Pt(II) complexes, namely [Pt{2-(phenylthiomethyl)pyridine}(H2O)2](CF3SO3)2 Pt(pyS Ph ), [Pt{2-(4-tert-butylphenylthiomethyl)pyridine}(H2O)2](CF3SO3)2 Pt(pyS Ph( t -But) ) and [Pt{2-(4-fluorophenylthiomethyl)pyridine}(H2O)2](CF3SO3)2 Pt(pyS PhF ), were synthesised and characterised. The pK a1 and pK a2 values of the complexes were determined titrimetrically. Substitution of the aqua ligands from these complexes by thiourea nucleophiles was studied at a pH of 2 and ionic strength of 0.1 M under pseudo-first-order conditions using stopped-flow and UV–visible spectrophotometric techniques. Substitution of the aqua ligands depends on both the nature and concentration of the incoming ligand, with low enthalpy and negative entropy of activation values. Substitution of the first and second aqua ligands occurs sequentially and fits the rate laws: k obs (1/2) = k (1/2) [Nu]. The second-order rate constant, k 1, relates to the substitution trans to sulphur, while k 2 is the second-order rate constant for the subsequent substitution of the aqua ligand trans to pyridine. The rate of substitution of the first aqua ligand decreases in the order: Pt(pyS Ph( t -But) ) > Pt(pyS PhF ) > Pt(pyS Ph ), while that of the second decreases in the order: Pt(pyS Ph( t -But) ) > Pt(pyS Ph ) > Pt(pyS PhF ), reflecting the influence of the substituents on the spectator ligands. 195Pt NMR spectra of aged solutions of complexes with the thiourea nucleophile suggest a subsequent but rapid concentration-independent ring opening of the N,S-bidentate ligand to form a PtS 4 species. The crystal structure of Pt(pyS PhF )Cl 2 was elucidated by X-ray diffraction analysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号