首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We find nice representatives for the 0-dimensional cusps of the degree n Siegel upper half-space under the action of \(\Gamma _0(\mathcal N )\). To each of these, we attach a Siegel Eisenstein series, and then we make explicit a result of Siegel, realizing any integral weight average Siegel theta series of arbitrary level \(\mathcal N \) and Dirichlet character \(\chi _{_L}\) modulo \(\mathcal N \) as a linear combination of Siegel Eisenstein series.  相似文献   

2.
Let G be a connected graph of order \({n\ge 3}\) and size m and \({f:E(G)\to \mathbb{Z}_n}\) an edge labeling of G. Define a vertex labeling \({f': V(G)\to \mathbb{Z}_n}\) by \({f'(v)= \sum_{u\in N(v)}f(uv)}\) where the sum is computed in \({\mathbb{Z}_n}\) . If f′ is one-to-one, then f is called a modular edge-graceful labeling and G is a modular edge-graceful graph. A graph G is modular edge-graceful if G contains a modular edge-graceful spanning tree. Several classes of modular edge-graceful trees are determined. For a tree T of order n where \({n\not\equiv 2 \pmod 4}\) , it is shown that if T contains at most two even vertices or the set of even vertices of T induces a path, then T is modular edge-graceful. It is also shown that every tree of order n where \({n\not\equiv 2\pmod 4}\) having diameter at most 5 is modular edge-graceful.  相似文献   

3.
A special case of a fundamental theorem of Schneider asserts that if \(j(\tau )\) is algebraic (where j is the classical modular invariant), then any zero z not in \(\mathbf{Q}.L_\tau := \mathbf{Q}\oplus \mathbf{Q}\tau \) of the Weierstrass function \(\wp (\tau ,\cdot )\) attached to the lattice \(L_\tau =\mathbf{Z}\oplus \mathbf{Z}\tau \) is transcendental. In this note we generalize this result to holomorphic Jacobi forms of weight k and index \(m\in \mathbf{N}\) with algebraic Fourier coefficients.  相似文献   

4.
We derive a new special case C(q) of a general continued fraction recorded by Ramanujan in his Lost Notebook. We give a representation of the continued fraction C(q) as a quotient of Dedekind eta-function and then use it to prove modular identities connecting C(q) with each of the continued fractions \(C(-q)\), \(C(q^{2})\), \(C(q^{3})\), \(C(q^{5})\), \(C(q^{7})\), \(C(q^{11})\), \(C(q^{13})\) and \(C(q^{17})\). We also prove general theorems for the explicit evaluation of the continued fraction C(q) by using Ramanujan’s class invariants.  相似文献   

5.
Let \({\mathbb {F}}\) be a field, V a vector space of dimension n over \({\mathbb {F}}\). Then the set of bilinear forms on V forms a vector space of dimension \(n^2\) over \({\mathbb {F}}\). For char \({\mathbb {F}}\ne 2\), if T is an invertible linear map from V onto V then the set of T-invariant bilinear forms, forms a subspace of this space of forms. In this paper, we compute the dimension of T-invariant bilinear forms over \({\mathbb {F}}\). Also we investigate similar type of questions for the infinitesimally T-invariant bilinear forms (T-skew symmetric forms). Moreover, we discuss the existence of nondegenerate invariant (resp. infinitesimally invariant) bilinear forms.  相似文献   

6.
The anti-Ramsey number, AR(nG), for a graph G and an integer \(n\ge |V(G)|\), is defined to be the minimal integer r such that in any edge-colouring of \(K_n\) by at least r colours there is a multicoloured copy of G, namely, a copy of G that each of its edges has a distinct colour. In this paper we determine, for large enough \(n,\, AR(n,L\cup tP_2)\) and \(AR(n,L\cup kP_3)\) for any large enough t and k, and a graph L satisfying some conditions. Consequently, we determine AR(nG), for large enough n, where G is \(P_3\cup tP_2\) for any \(t\ge 3,\, P_4\cup tP_2\) and \(C_3\cup tP_2\) for any \(t\ge 2,\, kP_3\) for any \(k\ge 3,\, tP_2\cup kP_3\) for any \(t\ge 1,\, k\ge 2\), and \(P_{t+1}\cup kP_3\) for any \(t\ge 3,\, k\ge 1\). Furthermore, we obtain upper and lower bounds for AR(nG), for large enough n, where G is \(P_{k+1}\cup tP_2\) and \(C_k\cup tP_2\) for any \(k\ge 4,\, t\ge 1\).  相似文献   

7.
For an integer N greater than 5 and a triple \({\mathfrak{a}}=[a_{1},a_{2},a_{3}]\) of integers with the properties 0<a i N/2 and a i a j for ij, we consider a modular function \(W_{\mathfrak{a}}(\tau)=\frac{\wp (a_{1}/N;L_{\tau})-\wp (a_{3}/N;L_{\tau})}{\wp (a_{2}/N;L_{\tau})-\wp(a_{3}/N;L_{\tau})}\) for the modular group Γ 1(N), where ?(z;L τ ) is the Weierstrass ?-function relative to the lattice L τ generated by 1 and a complex number τ with positive imaginary part. For a pair of such triples \({\mathfrak{A}}=[{\mathfrak{a}},{\mathfrak{b}}]\) and a pair of non-negative integers F=[m,n], we define a modular function \(T_{{\mathfrak{A}},F}\) for the group Γ 0(N) as the trace of the product \(W_{\mathfrak{a}}^{m}W_{\mathfrak{b}}^{n}\) to the modular function field of Γ 0(N). In this article, we study the integrality of singular values of the functions \(W_{\mathfrak{a}}\) and \(T_{{\mathfrak{A}},F}\) by using their modular equations. We prove that the functions \(T_{{\mathfrak{A}},F}\) for suitably chosen \({\mathfrak{A}}\) and F generate the modular function field of Γ 0(N), and from Shimura reciprocity and Gee–Stevenhagen method we obtain that singular values \(T_{{\mathfrak{A}},F}(\tau)\) for suitably chosen \({\mathfrak{A}}\) and F generate ring class fields. Further, we study the class polynomial of \(T_{{\mathfrak{A}},F}\) for Schertz N-system.  相似文献   

8.
We study the algebra \({{\mathrm{{\mathcal {MD}}}}}\) of generating functions for multiple divisor sums and its connections to multiple zeta values. The generating functions for multiple divisor sums are formal power series in q with coefficients in \({\mathbb {Q}}\) arising from the calculation of the Fourier expansion of multiple Eisenstein series. We show that the algebra \({{\mathrm{{\mathcal {MD}}}}}\) is a filtered algebra equipped with a derivation and use this derivation to prove linear relations in \({{\mathrm{{\mathcal {MD}}}}}\). The (quasi-)modular forms for the full modular group \({{\mathrm{SL}}}_2({\mathbb {Z}})\) constitute a subalgebra of \({{\mathrm{{\mathcal {MD}}}}}\), and this also yields linear relations in \({{\mathrm{{\mathcal {MD}}}}}\). Generating functions of multiple divisor sums can be seen as a q-analogue of multiple zeta values. Studying a certain map from this algebra into the real numbers we will derive a new explanation for relations between multiple zeta values, including those of length 2, coming from modular forms.  相似文献   

9.
Friedrich Wehrung 《Order》2018,35(1):111-132
A partial lattice P is ideal-projective, with respect to a class \(\mathcal {C}\) of lattices, if for every \(K\in \mathcal {C}\) and every homomorphism φ of partial lattices from P to the ideal lattice of K, there are arbitrarily large choice functions f:PK for φ that are also homomorphisms of partial lattices. This extends the traditional concept of (sharp) transferability of a lattice with respect to \(\mathcal {C}\). We prove the following: (1) A finite lattice P, belonging to a variety \(\mathcal {V}\), is sharply transferable with respect to \(\mathcal {V}\) iff it is projective with respect to \(\mathcal {V}\) and weakly distributive lattice homomorphisms, iff it is ideal-projective with respect to \(\mathcal {V}\), (2) Every finite distributive lattice is sharply transferable with respect to the class \(\mathcal {R}_{\text {mod}}\) of all relatively complemented modular lattices, (3) The gluing D 4 of two squares, the top of one being identified with the bottom of the other one, is sharply transferable with respect to a variety \(\mathcal {V}\) iff \(\mathcal {V}\) is contained in the variety \(\mathcal {M}_{\omega }\) generated by all lattices of length 2, (4) D 4 is projective, but not ideal-projective, with respect to \(\mathcal {R}_{\text {mod}}\) , (5) D 4 is transferable, but not sharply transferable, with respect to the variety \(\mathcal {M}\) of all modular lattices. This solves a 1978 problem of G. Grätzer, (6) We construct a modular lattice whose canonical embedding into its ideal lattice is not pure. This solves a 1974 problem of E. Nelson.  相似文献   

10.
We show that if a modular cuspidal eigenform f of weight 2k is 2-adically close to an elliptic curve \(E/\mathbb {Q}\), which has a cyclic rational 4-isogeny, then n-th Fourier coefficient of f is non-zero in the short interval \((X, X + cX^{\frac{1}{4}})\) for all \(X \gg 0\) and for some \(c > 0\). We use this fact to produce non-CM cuspidal eigenforms f of level \(N>1\) and weight \(k > 2\) such that \(i_f(n) \ll n^{\frac{1}{4}}\) for all \(n \gg 0\).  相似文献   

11.
Generally, the term uc-ness means some continuity is uniform. A metric space X is uc when any continuous function fromX to [0, 1] is uniformly continuous and a metrizable space X is a Nagata space when it can be equipped with a uc metric. We consider natural forms of uc-ness for the \({\omega_\mu}\)-metric spaces, which fill a very large and interesting class of uniform spaces containing the usual metric ones, and extend to them various different formulations of the metric uc-ness, by additionaly proving their equivalence. Furthermore, since any \({\omega_\mu}\)-compact space is uc and any uc \({\omega_\mu}\)-metric space is complete, in the line of constructing dense extensions which preserve some structure, such as uniform completions, we focus on the existence for an \({\omega_\mu}\)-metrizable space of dense topological extensions carrying a uc \({\omega_\mu}\)-metric. In this paper we show that an \({\omega_\mu}\)-metrizable space X is uc-extendable if and only if there exists a compatible \({\omega_\mu}\)-metric d on X such that the set X′ of all accumulation points in X is crowded, i.e., any \({\omega_\mu}\)-sequence in X′ has a d-Cauchy \({\omega_\mu}\)-subsequence in X′.  相似文献   

12.
Let \(X=\mathscr {J}(\widetilde{\mathscr {C}})\), the Jacobian of a genus 2 curve \(\widetilde{\mathscr {C}}\) over \({\mathbb {C}}\), and let Y be the associated Kummer surface. Consider an ample line bundle \(L=\mathscr {O}(m\widetilde{\mathscr {C}})\) on X for an even number m, and its descent to Y, say \(L'\). We show that any dominating component of \({\mathscr {W}}^1_{d}(|L'|)\) corresponds to \(\mu _{L'}\)-stable Lazarsfeld–Mukai bundles on Y. Further, for a smooth curve \(C\in |L|\) and a base-point free \(g^1_d\) on C, say (AV), we study the \(\mu _L\)-semistability of the rank-2 Lazarsfeld–Mukai bundle associated to (C, (AV)) on X. Under certain assumptions on C and the \(g^1_d\), we show that the above Lazarsfeld–Mukai bundles are \(\mu _L\)-semistable.  相似文献   

13.
If \(\rho \) denotes a finite-dimensional complex representation of \(\mathbf {SL}_{2}(\mathbf {Z})\), then it is known that the module \(M(\rho )\) of vector-valued modular forms for \(\rho \) is free and of finite rank over the ring M of scalar modular forms of level one. This paper initiates a general study of the structure of \(M(\rho )\). Among our results are absolute upper and lower bounds, depending only on the dimension of \(\rho \), on the weights of generators for \(M(\rho )\), as well as upper bounds on the multiplicities of weights of generators of \(M(\rho )\). We provide evidence, both computational and theoretical, that a stronger three-term multiplicity bound might hold. An important step in establishing the multiplicity bounds is to show that there exists a free basis for \(M(\rho )\) in which the matrix of the modular derivative operator does not contain any copies of the Eisenstein series \(E_6\) of weight six.  相似文献   

14.
Let q be a prime and A a finite q-group of exponent q acting by automorphisms on a finite \(q'\)-group G. Assume that A has order at least \(q^3\). We show that if \(\gamma _{\infty } (C_{G}(a))\) has order at most m for any \(a \in A^{\#}\), then the order of \(\gamma _{\infty } (G)\) is bounded solely in terms of m and q. If \(\gamma _{\infty } (C_{G}(a))\) has rank at most r for any \(a \in A^{\#}\), then the rank of \(\gamma _{\infty } (G)\) is bounded solely in terms of r and q.  相似文献   

15.
Let \(S_k(N)\) be the space of all holomorphic cusp forms of even integral weight k for the congruence group \(\varGamma _0(N).\) For any \(f\in S_k(N)\) with \(\Vert f\Vert _2=1,\) we study the higher-power moments of \(\sum _{n\le x}a_f(n),\) where \(a_f(n)\) is the nth normalized Fourier coefficient of f. Furthermore, as an application, we investigate the higher-power moments of Fourier coefficients in arithmetic progressions.  相似文献   

16.
Given any Kodaira curve C in a complex surface X, we construct a simply-laced affine Lie algebra bundle \(\mathcal {E}\) over X. When \( p _{g}(X)=0\), we construct deformations of holomorphic structures on \(\mathcal {E}\) such that the new bundle is trivial over any ADE curve \( C^{\prime }\) inside C and therefore descends to the singular surface obtained by contracting \(C^{\prime }\).  相似文献   

17.
In 2007, Andrews and Paule introduced the notion of broken k-diamond partitions. Let \(\Delta _k(n)\) denote the number of broken k-diamond partitions of n for a fixed positive integer k. Recently, Paule and Radu presented some conjectures on congruences modulo 7 for \(\Delta _3(n)\) which were proved by Jameson and Xiong based on the theory of modular forms. Very recently, Xia proved several infinite families of congruences modulo 7 for \(\Delta _3(n)\) using theta function identities. In this paper, many new infinite families of congruences modulo 7 for \(\Delta _3(n)\) are derived based on an identity of Newman and the (pk)-parametrization of theta functions due to Alaca, Alaca and Williams. In particular, some non-standard congruences modulo 7 for \(\Delta _3(n)\) are deduced. For example, we prove that for \(\alpha \ge 0\), \(\Delta _3\left( \frac{14\times 757^{\alpha }+1}{3}\right) \equiv 6 -\alpha \ (\mathrm{mod}\ 7)\).  相似文献   

18.
Let \(\varGamma \) be a distance-semiregular graph on Y, and let \(D^Y\) be the diameter of \(\varGamma \) on Y. Let \(\varDelta \) be the halved graph of \(\varGamma \) on Y. Fix \(x \in Y\). Let T and \(T'\) be the Terwilliger algebras of \(\varGamma \) and \(\varDelta \) with respect to x, respectively. Assume, for an integer i with \(1 \le 2i \le D^Y\) and for \(y,z \in \varGamma _{2i}(x)\) with \(\partial _{\varGamma }(y,z)=2\), the numbers \(|\varGamma _{2i-1}(x) \cap \varGamma (y) \cap \varGamma (z)|\) and \(|\varGamma _{2i+1}(x) \cap \varGamma (y) \cap \varGamma (z)|\) depend only on i and do not depend on the choice of y, z. The first goal in this paper is to show the relations between T-modules of \(\varGamma \) and \(T'\)-modules of \(\varDelta \). Assume \(\varGamma \) is the incidence graph of the Hamming graph H(Dn) on the vertex set Y and the set \({\mathcal {C}}\) of all maximal cliques. Then, \(\varGamma \) satisfies above assumption and \(\varDelta \) is isomorphic to H(Dn). The second goal is to determine the irreducible T-modules of \(\varGamma \). For each irreducible T-module W, we give a basis for W the action of the adjacency matrix on this basis and we calculate the multiplicity of W.  相似文献   

19.
In this paper, we study the reducing subspaces for the multiplication operator by a finite Blaschke product \({\phi}\) on the Dirichlet space D. We prove that any two distinct nontrivial minimal reducing subspaces of \({M_\phi}\) are orthogonal. When the order n of \({\phi}\) is 2 or 3, we show that \({M_\phi}\) is reducible on D if and only if \({\phi}\) is equivalent to \({z^n}\). When the order of \({\phi}\) is 4, we determine the reducing subspaces for \({M_\phi}\), and we see that in this case \({M_\phi}\) can be reducible on D when \({\phi}\) is not equivalent to \({z^4}\). The same phenomenon happens when the order n of \({\phi}\) is not a prime number. Furthermore, we show that \({M_\phi}\) is unitarily equivalent to \({M_{z^n} (n > 1)}\) on D if and only if \({\phi = az^n}\) for some unimodular constant a.  相似文献   

20.
The \(L^1\)-Sobolev inequality states that for compactly supported functions u on the Euclidean n-space, the \(L^{n/(n-1)}\)-norm of a compactly supported function is controlled by the \(L^1\)-norm of its gradient. The generalization to differential forms (due to Lanzani and Stein and Bourgain and Brezis) is recent, and states that a the \(L^{n/(n-1)}\)-norm of a compactly supported differential h-form is controlled by the \(L^1\)-norm of its exterior differential du and its exterior codifferential \(\delta u\) (in special cases the \(L^1\)-norm must be replaced by the \(\mathcal H^1\)-Hardy norm). We shall extend this result to Heisenberg groups in the framework of an appropriate complex of differential forms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号