首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We consider a convexity notion for complex spaces X with respect to a holomorphic line bundle L over X. This definition has been introduced by Grauert and, when L is analytically trivial, we recover the standard holomorphic convexity. In this circle of ideas, we prove the counterpart of the classical Remmert’s reduction result for holomorphically convex spaces. In the same vein, we show that if H0(X,L) separates each point of X, then X can be realized as a Riemann domain over the complex projective space Pn, where n is the complex dimension of X and L is the pull-back of O(1).  相似文献   

2.
For a Tychonoff space X, we obtain a criterion of the σ-countable compactness of the space of continuous functions C(X) with the set-open topology. In particular, for the class of extremally disconnected spaces X, we prove that the space C λ(X) is σ-countably compact if and only if X is a pseudocompact space, the set X(P) of all P-points of the space X is dense in X, and the family λ consists of finite subsets of the set X(P).  相似文献   

3.
We establish necessary and sufficient conditions for embeddings of Bessel potential spaces H σ X(IR n ) with order of smoothness σ?∈?(0, n), modelled upon rearrangement invariant Banach function spaces X(IR n ), into generalized Hölder spaces (involving k-modulus of smoothness). We apply our results to the case when X(IR n ) is the Lorentz-Karamata space \(L_{p,q;b}({{\rm I\kern-.17em R}}^n)\). In particular, we are able to characterize optimal embeddings of Bessel potential spaces \(H^{\sigma}L_{p,q;b}({{\rm I\kern-.17em R}}^n)\) into generalized Hölder spaces. Applications cover both superlimiting and limiting cases. We also show that our results yield new and sharp embeddings of Sobolev-Orlicz spaces W k?+?1 L n/k(logL) α (IR n ) and W k L n/k(logL) α (IR n ) into generalized Hölder spaces.  相似文献   

4.
For a topological property P, we say that a space X is star Pif for every open cover Uof the space X there exists Y ? X such that St(Y,U) = X and Y has P. We consider star countable and star Lindelöf spaces establishing, among other things, that there exists first countable pseudocompact spaces which are not star Lindelöf. We also describe some classes of spaces in which star countability is equivalent to countable extent and show that a star countable space with a dense σ-compact subspace can have arbitrary extent. It is proved that for any ω 1-monolithic compact space X, if C p (X)is star countable then it is Lindelöf.  相似文献   

5.
Given a metric measure space X, we consider a scale of function spaces \(T^{p,q}_s(X)\), called the weighted tent space scale. This is an extension of the tent space scale of Coifman, Meyer, and Stein. Under various geometric assumptions on X we identify some associated interpolation spaces, in particular certain real interpolation spaces. These are identified with a new scale of function spaces, which we call Z -spaces, that have recently appeared in the work of Barton and Mayboroda on elliptic boundary value problems with boundary data in Besov spaces. We also prove Hardy–Littlewood–Sobolev-type embeddings between weighted tent spaces.  相似文献   

6.
In this article we prove a general result on a nef vector bundle E on a projective manifold X of dimension n depending on the vector space Hn,n(X,E): It is also shown that Hn,n(X,E) = 0 for an indecomposable nef rank 2 vector bundles E on some specific type of n dimensional projective manifold X. The same vanishing shown to hold for indecomposable nef and big rank 2 vector bundles on any variety with trivial canonical bundle.  相似文献   

7.
The spaces X in which every prime z°-ideal of C(X) is either minimal or maximal are characterized. By this characterization, it turns out that for a large class of topological spaces X, such as metric spaces, basically disconnected spaces and one-point compactifications of discrete spaces, every prime z°-ideal in C(X) is either minimal or maximal. We will also answer the following questions: When is every nonregular prime ideal in C(X) a z°-ideal? When is every nonregular (prime) z-ideal in C(X) a z°-ideal? For instance, we show that every nonregular prime ideal of C(X) is a z°-ideal if and only if X is a ?-space (a space in which the boundary of any zeroset is contained in a zeroset with empty interior).  相似文献   

8.
Let (Ω, Σ) be a measurable space and m 0: Σ → X 0 and m 1: Σ → X 1 be positive vector measures with values in the Banach Köthe function spaces X 0 and X 1. If 0 < α < 1, we define a new vector measure [m 0, m 1] α with values in the Calderón lattice interpolation space X 0 1?ga X 1 α and we analyze the space of integrable functions with respect to measure [m 0, m 1] α in order to prove suitable extensions of the classical Stein-Weiss formulas that hold for the complex interpolation of L p -spaces. Since each p-convex order continuous Köthe function space with weak order unit can be represented as a space of p-integrable functions with respect to a vector measure, we provide in this way a technique to obtain representations of the corresponding complex interpolation spaces. As applications, we provide a Riesz-Thorin theorem for spaces of p-integrable functions with respect to vector measures and a formula for representing the interpolation of the injective tensor product of such spaces.  相似文献   

9.
This paper presents a study of generic elements in full isometry groups of Polish ultrametric spaces. We obtain a complete characterization of Polish ultrametric spaces X whose isometry group Iso(X) has a neighborhood basis at the identity consisting of open subgroups with ample generics. It also gives a characterization of the existence of an open subgroup in Iso(X) with a comeager conjugacy class.We also study the transfinite sequence defined by the projection of a Polish ultrametric space X on the ultrametric space of orbits of X under the action of Iso(X).  相似文献   

10.
A closed subspace H of a symmetric space X on [0, 1] is said to be strongly embedded in X if in H the convergence in X-norm is equivalent to the convergence in measure. We study symmetric spaces X with the property that all their reflexive subspaces are strongly embedded in X. We prove that it is the case for all spaces, which satisfy an analogue of the classical Dunford–Pettis theorem on relatively weakly compact subsets in L1. At the same time the converse assertion fails for a broad class of separableMarcinkiewicz spaces.  相似文献   

11.
We give an example of an infinite metrizable space X such that the space Cp(X), of continuous real-valued functions on X endowed with the pointwise topology, is not homeomorphic to its own square Cp(X) × Cp(X). The space X is a zero-dimensional subspace of the real line. Our result answers a long-standing open question in the theory of function spaces posed by A. V. Arhangel’skii.  相似文献   

12.
Assume that the unit spheres of Banach spaces X and Y are uniformly homeomorphic.Then we prove that all unit spheres of the Lebesgue–Bochner function spaces L_p(μ, X) and L_q(μ, Y)are mutually uniformly homeomorphic where 1 ≤ p, q ∞. As its application, we show that if a Banach space X has Property H introduced by Kasparov and Yu, then the space L_p(μ, X), 1 ≤ p ∞,also has Property H.  相似文献   

13.
14.
Assuming the continuum hypothesis we construct an example of a nonmetrizable compact set X with the following properties(1) X n is hereditarily separable for all n ∈ ?(2) X n \ Δ n is perfectly normal for every n ∈ ?, where Δ n is the generalized diagonal of X n , i.e., the set of points with at least two equal coordinates(3) for every seminormal functor ? that preserves weights and the points of bijectivity the space ? k (X) is hereditarily normal, where k is the second smallest element of the power spectrum of the functor ?; in particular, X 2 and λ 3 X are hereditarily normal.Our example of a space of this type strengthens the well-known example by Gruenhage of a nonmetrizable compact set whose square is hereditarily normal and hereditarily separable.  相似文献   

15.
For every finite ultrametric space X we can put in correspondence its representing tree TX. We found conditions under which the isomorphism of representing trees TX and TY implies the isometricity of ultrametric spaces X and Y having the same range of distances.  相似文献   

16.
Generally, the term uc-ness means some continuity is uniform. A metric space X is uc when any continuous function fromX to [0, 1] is uniformly continuous and a metrizable space X is a Nagata space when it can be equipped with a uc metric. We consider natural forms of uc-ness for the \({\omega_\mu}\)-metric spaces, which fill a very large and interesting class of uniform spaces containing the usual metric ones, and extend to them various different formulations of the metric uc-ness, by additionaly proving their equivalence. Furthermore, since any \({\omega_\mu}\)-compact space is uc and any uc \({\omega_\mu}\)-metric space is complete, in the line of constructing dense extensions which preserve some structure, such as uniform completions, we focus on the existence for an \({\omega_\mu}\)-metrizable space of dense topological extensions carrying a uc \({\omega_\mu}\)-metric. In this paper we show that an \({\omega_\mu}\)-metrizable space X is uc-extendable if and only if there exists a compatible \({\omega_\mu}\)-metric d on X such that the set X′ of all accumulation points in X is crowded, i.e., any \({\omega_\mu}\)-sequence in X′ has a d-Cauchy \({\omega_\mu}\)-subsequence in X′.  相似文献   

17.
In the theory of operators on a Riesz space (vector lattice), an important result states that the Riesz homomorphisms (lattice homomorphisms) on C(X) are exactly the weighted composition operators. We extend this result to Riesz* homomorphisms on order dense subspaces of C(X). On those subspace we consider and compare various classes of operators that extend the notion of a Riesz homomorphism. Furthermore, using the weighted composition structure of Riesz* homomorphisms we obtain several results concerning bijective Riesz* homomorphisms. In particular, we characterize the automorphism group for order dense subspaces of C(X). Lastly, we develop a similar theory for Riesz* homomorphisms on subspace of \(C_0(X)\), for a locally compact Hausdorff space X, and apply it to smooth manifolds and Sobolev spaces.  相似文献   

18.
Results on extrapolation withA∞ weights in grand Lebesgue spaces are obtained. Generally, these spaces are defined with respect to the productmeasure μ1 ×· · ·×μn onX1 ×· · ·×Xn, where (Xi, di, μi), i = 1,..., n, are spaces of homogeneous type. As applications of the obtained results, new one-weight estimates with A weights for operators of harmonic analysis are derived.  相似文献   

19.
In this note, we prove the following result. There is a positive constant ε(n, Λ) such that if M n is a simply connected compact Kähler manifold with sectional curvature bounded from above by Λ, diameter bounded from above by 1, and with holomorphic bisectional curvature H ≥ ?ε(n, Λ), then M n is diffeomorphic to the product M 1 × ? × M k , where each M i is either a complex projective space or an irreducible Kähler–Hermitian symmetric space of rank ≥ 2. This resolves a conjecture of Fang under the additional upper bound restrictions on sectional curvature and diameter.  相似文献   

20.
Let X be a partially ordered real Banach space, let a,bX with ab. Let φ be a bounded linear functional on X. We say that X satisfies the box-optimization property (or X is a BOP space) if the box-constrained linear program: max 〈φ,x〉, s.t. axb, has an optimal solution for any φ,a and b. Such problems arise naturally in solving a class of problems known as interval linear programs. BOP spaces were introduced (in a different language) and systematically studied in the first author’s doctoral thesis. In this paper, we identify new classes of Banach spaces that are BOP spaces. We present also sufficient conditions under which answers are in the affirmative for the following questions:
  1. (i)
    When is a closed subspace of a BOP space a BOP space?
     
  2. (ii)
    When is the range of a bounded linear map a BOP space?
     
  3. (iii)
    Is the quotient space of a BOP space a BOP space?
     
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号