首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
This paper focuses on risk control problem of the insurance company in enterprise risk management. The insurer manages its financial risk through purchasing excess-of-loss reinsurance, and investing its wealth in the constant elasticity of variance stock market. We model risk process by Brownian motion with drift, and study the optimization problem of maximizing the exponential utility of terminal wealth under the controls of reinsurance and investment. Using stochastic control theory, we obtain explicit expressions for optimal polices and value function. We also show that the optimal excess-of-loss reinsurance is always better than optimal proportional reinsurance. And some numerical examples are given.  相似文献   

2.
We study optimal reinsurance in the framework of stochastic Stackelberg differential game, in which an insurer and a reinsurer are the two players, and more specifically are considered as the follower and the leader of the Stackelberg game, respectively. An optimal reinsurance policy is determined by the Stackelberg equilibrium of the game, consisting of an optimal reinsurance strategy chosen by the insurer and an optimal reinsurance premium strategy by the reinsurer. Both the insurer and the reinsurer aim to maximize their respective mean–variance cost functionals. To overcome the time-inconsistency issue in the game, we formulate the optimization problem of each player as an embedded game and solve it via a corresponding extended Hamilton–Jacobi–Bellman equation. It is found that the Stackelberg equilibrium can be achieved by the pair of a variance reinsurance premium principle and a proportional reinsurance treaty, or that of an expected value reinsurance premium principle and an excess-of-loss reinsurance treaty. Moreover, the former optimal reinsurance policy is determined by a unique, model-free Stackelberg equilibrium; the latter one, though exists, may be non-unique and model-dependent, and depend on the tail behavior of the claim-size distribution to be more specific. Our numerical analysis provides further support for necessity of integrating the insurer and the reinsurer into a unified framework. In this regard, the stochastic Stackelberg differential reinsurance game proposed in this paper is a good candidate to achieve this goal.  相似文献   

3.
In this paper, we consider the jump‐diffusion risk model with proportional reinsurance and stock price process following the constant elasticity of variance model. Compared with the geometric Brownian motion model, the advantage of the constant elasticity of variance model is that the volatility has correlation with the risky asset price, and thus, it can explain the empirical bias exhibited by the Black and Scholes model, such as volatility smile. Here, we study the optimal investment–reinsurance problem of maximizing the expected exponential utility of terminal wealth. By using techniques of stochastic control theory, we are able to derive the explicit expressions for the optimal strategy and value function. Numerical examples are presented to show the impact of model parameters on the optimal strategies. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

4.
This paper considers the problem of optimal reinsurance in a compound Poisson risk model with dependent classes of insurance business. It is assumed that the risk process in each class follows a compound Poisson process, and that all classes are correlated due to the so-called thinning-dependence structure. Under the criterion of maximizing the adjustment coefficient, methods for finding the optimal reinsurance strategies are discussed for both the expected value premium principle and the variance premium principle. Numerical examples are also provided to illustrate the impact of the model parameters on the optimal reinsurance strategies.  相似文献   

5.
结合保险人和再保险人的共同利益,研究了具有两类相依险种风险模型下的最优再保险问题.假定再保险公司采用方差保费原理收取保费,利用复合Poisson模型和扩散逼近模型两种方式去刻画保险公司和再保险公司的资本盈余过程,在期望效用最大准则下,证明了最优再保险策略的存在性和唯一性,通过求解Hamilton-Jacobi-Bellman(HJB)方程,得到了两种模型下相应的最优再保险策略及值函数的明晰解答,并给出了数值算例及分析.  相似文献   

6.
This paper is concerned with the optimal form of reinsurance when the cedent seeks to maximize the adjustment coefficient of the retained risk (related to the probability of ultimate ruin)-which we prove to be equivalent to maximizing the expected utility of wealth, with respect to an exponential utility with a certain coefficient of risk aversion-and restricts the reinsurance strategies to functions of the individual claims, which is the case for most nonproportional treaties placed in the market.Assuming that the premium calculation principle is a convex functional we prove the existence and uniqueness of solutions and provide a necessary optimality condition (via needle-like perturbations, widely known in optimal control). These results are used to find the optimal reinsurance policy when the reinsurance loading is increasing with the variance. The optimal contract is described by a nonlinear function, of a similar form than in the aggregate case.  相似文献   

7.
This paper is concerned with the optimal form of reinsurance from the ceding company point of view, when the cedent seeks to maximize the adjustment coefficient of the retained risk. We deal with the problem by exploring the relationship between maximizing the adjustment coefficient and maximizing the expected utility of wealth for the exponential utility function, both with respect to the retained risk of the insurer.Assuming that the premium calculation principle is a convex functional and that some other quite general conditions are fulfilled, we prove the existence and uniqueness of solutions and provide a necessary optimal condition. These results are used to find the optimal reinsurance policy when the reinsurance premium calculation principle is the expected value principle or the reinsurance loading is an increasing function of the variance. In the expected value case the optimal form of reinsurance is a stop-loss contract. In the other cases, it is described by a nonlinear function.  相似文献   

8.
In this paper, based on equilibrium control law proposed by Björk and Murgoci (2010), we study an optimal investment and reinsurance problem under partial information for insurer with mean–variance utility, where insurer’s risk aversion varies over time. Instead of treating this time-inconsistent problem as pre-committed, we aim to find time-consistent equilibrium strategy within a game theoretic framework. In particular, proportional reinsurance, acquiring new business, investing in financial market are available in the market. The surplus process of insurer is depicted by classical Lundberg model, and the financial market consists of one risk free asset and one risky asset with unobservable Markov-modulated regime switching drift process. By using reduction technique and solving a generalized extended HJB equation, we derive closed-form time-consistent investment–reinsurance strategy and corresponding value function. Moreover, we compare results under partial information with optimal investment–reinsurance strategy when Markov chain is observable. Finally, some numerical illustrations and sensitivity analysis are provided.  相似文献   

9.
This paper deals with the problem of ruin probability minimization under various investment control and reinsurance schemes. We first look at the minimization of ruin probabilities in the models in which the surplus process is a continuous diffusion process in which we employ stochastic control to find the optimal policies for reinsurance and investment. We then focus on the case in which the surplus process is modeled via a classical Lundberg process, i.e. the claims process is compound Poisson. There, the optimal reinsurance policy is derived from the Hamilton-Jacobi-Bellman equation.  相似文献   

10.
A chain of reinsurance is a hierarchical system formed by the subsequent interactions among multiple (re)insurance agents, which is quite often encountered in practice. This paper proposes a novel continuous-time framework for studying the optimal reinsurance strategies within a chain of reinsurance. The transactions between reinsurance buyers and sellers are formulated by means of Stackelberg games, in order to reflect the conflicting interests and unequal negotiation powers in the bargaining process. Assuming the variance premium principle and the mean–variance criterion on the surplus processes, we solve the time-consistent optimal reinsurance demands and pricing strategies in explicit forms, which are surprisingly plain.Based on the proposed reinsurance chain models, our in-depth theoretical analysis shows that: (a.) it is optimal to situate more (resp. less) risk averse reinsurers to the latter (resp. former) positions in a chain of reinsurance; (b.) adding new reinsurers will lower the reinsurance prices at all levels in a chain of reinsurance, promoting the existing agents to rationally control their respective risk exposures; and essentially (c.) alleviate the systemic risk in the chain structure.  相似文献   

11.
We propose a model for reinsurance control for an insurance firm in the case where the liabilities are driven by fractional Brownian motion, a stochastic process exhibiting long-range dependence. The problem is transformed to a nonlinear programming problem, the solution of which provides the optimal reinsurance policy. The effect of various parameters of the model, such as the safety loading of the reinsurer and the insurer, the Hurst parameter, etc. on the optimal reinsurance program is studied in some detail. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

12.
杨鹏  林祥 《经济数学》2012,(1):42-46
对跳-扩散风险模型,研究了最优投资和再保险问题.保险公司可以购买再保险减少理赔,保险公司还可以把盈余投资在一个无风险资产和一个风险资产上.假设再保险的方式为联合比例-超额损失再保险.还假设无风险资产和风险资产的利率是随机的,风险资产的方差也是随机的.通过解决相应的Hamilton-Jacobi-Bellman(HJB)方程,获得了最优值函数和最优投资、再保险策略的显示解.特别的,通过一个例子具体的解释了得到的结论.  相似文献   

13.
This paper considers the robust optimal reinsurance–investment strategy selection problem with price jumps and correlated claims for an ambiguity-averse insurer (AAI). The correlated claims mean that future claims are correlated with historical claims, which is measured by an extrapolative bias. In our model, the AAI transfers part of the risk due to insurance claims via reinsurance and invests the surplus in a financial market consisting of a risk-free asset and a risky asset whose price is described by a jump–diffusion model. Under the criterion of maximizing the expected utility of terminal wealth, we obtain closed-form solutions for the robust optimal reinsurance–investment strategy and the corresponding value function by using the stochastic dynamic programming approach. In order to examine the influence of investment risk on the insurer’s investment behavior, we further study the time-consistent reinsurance–investment strategy under the mean–variance framework and also obtain the explicit solution. Furthermore, we examine the relationship among the optimal reinsurance–investment strategies of the AAI under three typical cases. A series of numerical experiments are carried out to illustrate how the robust optimal reinsurance–investment strategy varies with model parameters, and result analyses reveal some interesting phenomena and provide useful guidances for reinsurance and investment in reality.  相似文献   

14.
In this paper, we investigate the optimal time-consistent investment–reinsurance strategies for an insurer with state dependent risk aversion and Value-at-Risk (VaR) constraints. The insurer can purchase proportional reinsurance to reduce its insurance risks and invest its wealth in a financial market consisting of one risk-free asset and one risky asset, whose price process follows a geometric Brownian motion. The surplus process of the insurer is approximated by a Brownian motion with drift. The two Brownian motions in the insurer’s surplus process and the risky asset’s price process are correlated, which describe the correlation or dependence between the insurance market and the financial market. We introduce the VaR control levels for the insurer to control its loss in investment–reinsurance strategies, which also represent the requirement of regulators on the insurer’s investment behavior. Under the mean–variance criterion, we formulate the optimal investment–reinsurance problem within a game theoretic framework. By using the technique of stochastic control theory and solving the corresponding extended Hamilton–Jacobi–Bellman (HJB) system of equations, we derive the closed-form expressions of the optimal investment–reinsurance strategies. In addition, we illustrate the optimal investment–reinsurance strategies by numerical examples and discuss the impact of the risk aversion, the correlation between the insurance market and the financial market, and the VaR control levels on the optimal strategies.  相似文献   

15.
假定保险公司既可以投资在风险资产上,同时又允许混合再保险.用经典的Cramér-Lundberg模型来近似保险公司的盈余过程,考虑了在破产概率最小限制下保险公司的最优投资和再保策略满足的HJB方程,证明了解的存在性和最优性,并对最优策略下的破产概率进行了近似估计.  相似文献   

16.
In our model, the insurer is allowed to buy reinsurance and invest in a risk-free asset and a risky asset. The claim process is assumed to follow a Brownian motion with drift, while the price process of the risky asset is described by the constant elasticity of variance (CEV) model. The Hamilton-Jacobi-Bellman (HJB) equation associated with the optimal reinsurance and investment strategies is established, and solutions are found for insurers with CRRA or CARRA utility.  相似文献   

17.
??Under inflation influence, this paper investigate a stochastic differential game with reinsurance and investment. Insurance company chose a strategy to minimizing the variance of the final wealth, and the financial markets as a game ``virtual hand' chosen a probability measure represents the economic ``environment' to maximize the variance of the final wealth. Through this double game between the insurance companies and the financial markets, get optimal portfolio strategies. When investing, we consider inflation, the method of dealing with inflation is: Firstly, the inflation is converted to the risky assets, and then constructs the wealth process. Through change the original based on the mean-variance criteria stochastic differential game into unrestricted cases, then application linear-quadratic control theory obtain optimal reinsurance strategy and investment strategy and optimal market strategy as well as the closed form expression of efficient frontier are obtained; finally get reinsurance strategy and optimal investment strategy and optimal market strategy as well as the closed form expression of efficient frontier for the original stochastic differential game.  相似文献   

18.
In this paper, we study optimal proportional reinsurance policy of an insurer with a risk process which is perturbed by a diffusion. We derive closed-form expressions for the policy and the value function, which are optimal in the sense of maximizing the expected utility in the jump-diffusion framework. We also obtain explicit expressions for the policy and the value function, which are optimal in the sense of maximizing the expected utility or maximizing the survival probability in the diffusion approximation case. Some numerical examples are presented, which show the impact of model parameters on the policy. We also compare the results under the different criteria and different cases.  相似文献   

19.
This article studies the optimal proportional reinsurance and investment problem under a constant elasticity of variance(CEV) model.Assume that the insurer’s surplus process follows a jump-diffusion process,the insurer can purchase proportional reinsurance from the reinsurer via the variance principle and invest in a risk-free asset and a risky asset whose price is modeled by a CEV model.The diffusion term can explain the uncertainty associated with the surplus of the insurer or the additional small claims.The objective of the insurer is to maximize the expected exponential utility of terminal wealth.This optimization problem is studied in two cases depending on the diffusion term’s explanation.In all cases,by using techniques of stochastic control theory,closed-form expressions for the value functions and optimal strategies are obtained.  相似文献   

20.
This paper deals with the optimal reinsurance strategy from an insurer’s point of view. Our objective is to find the optimal policy that maximises the insurer’s survival probability. To meet the requirement of regulators and provide a tool to risk management, we introduce the dynamic version of Value-at-Risk (VaR), Conditional Value-at-Risk (CVaR) and worst-case CVaR (wcCVaR) constraints in diffusion model and the risk measure limit is proportional to company’s surplus in hand. In the dynamic setting, a CVaR/wcCVaR constraint is equivalent to a VaR constraint under a higher confidence level. Applying dynamic programming technique, we obtain closed form expressions of the optimal reinsurance strategies and corresponding survival probabilities under both proportional and excess-of-loss reinsurance. Several numerical examples are provided to illustrate the impact caused by dynamic VaR/CVaR/wcCVaR limit in both types of reinsurance policy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号