首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
研究和详细地比较了RMF理论中不同的有效相互作用强度的密度依赖性, 并且讨论了这种密度依赖性对于核物质和中子星性质的影响. 对于核物质, 不同的参数组给出的对称核物质的饱和点非常接近, 基本都在经验值的范围内. 对于中子星, 考虑超子后不同参数组给出的质量极限的范围为1.52—2.06 M☉, 半径为10.24—11.38 km.The density dependencies of various effective interaction strengths in the relativistic mean field and their influences on the properties of nuclear matter and neutron stars are studied and carefully compared. The differences of saturation properties given by various effective interactions are subtle in symmetric nuclear matter. The Oppenheimer Volkoff mass limits of neutron stars calculated from different equations of state are 1.52—2.06 M☉, and the radii are 10.24—11.38 km with hyperons included.  相似文献   

2.
For a given equation of state of neutron matter in the relativistic σ-ω model, ๏๏๏๏๏ including the vacuum fluctuation of neutron and σ meson, the properties of pure neutron star are studied. We find that the maximum mass of pure neutron star is ~ 2.0 M_{\odot}. At the same time, the influence of incompressibility of the nuclear matter to the properties of neutron star is also studied. We also find that the maximum mass of neutron stars decreases as equation of state of neutron matter becomes softer.  相似文献   

3.
We investigate the properties of the neutron star with relativistic mean-field models. We incorporate in the quantum hadrodynamics and in the quark-meson coupling models a possible reduction of meson masses in nuclear matter. The equation of state for neutron star matter is obtained and is employed in Oppenheimer-Volkov equation to extract the maximum mass of the stable neutron star. We find that the equation of state, the composition and the properties of the neutron stars are sensitive to the values of the meson masses in medium.  相似文献   

4.
《Nuclear Physics A》1997,615(4):516-536
An equation of state (EOS) of nuclear matter with explicit inclusion of a spin-isospin dependent force is constructed from a finite range, momentum and density dependent effective interaction. This EOS is found to be in good agreement with those obtained from more sophisticated models for unpolarised nuclear matter. Introducing spin degrees of freedom, it is found that it is possible for neutron matter to undergo a ferromagnetic transition at densities realisable in the core of neutron stars. The maximum mass and the surface magnetic field of the neutron star can be fairly explained in this model. Since finding quark matter rather than hadronic matter at the core of neutron stars is a possibility, the proposed EOS is also applied to the study of hybrid stars. It is found using the bag model picture that one can in principle describe both the mass as well as the surface magnetic field of hybrid stars satisfactorily.  相似文献   

5.
Neutron stars with isovector scalar correlations   总被引:1,自引:0,他引:1  
Neutron stars with the isovector scalar δ-field are studied in the framework of the relativistic mean-field (RMF) approach in a pure-nucleon-plus-lepton scheme. The δ-field leads to a larger repulsion in dense neutron-rich matter and to a definite splitting of proton and neutron effective masses. Both features are influencing the stability conditions of the neutron stars. Two parametrizations for the effective nonlinear Lagrangian density are used to calculate the nuclear equation of state (EOS) and the neutron star properties, and compared to correlated Dirac-Brueckner results. We conclude that in order to reproduce reasonable nuclear structure and neutron star properties within a RMF approach, a density dependence of the coupling constants is required.  相似文献   

6.
Density-dependent parametrization models of the nucleon-meson coupfing constants, including the isovector scalar δ-field, are applied to asymmetric nuclear matter. The nuclear equation of state (EOS) and the neutron star properties are studied in a relativistic Lagrangian density, using the relativistic mean field (RMF) hadron theory. It is known that the δ-field in the constant coupling scheme leads to a larger repulsion in dense neutron-rich matter and to a definite splitting of proton and neutron effective masses, finally influences the stability of the neutron stars. We use density-dependent models of the nucleon-meson couplings to study the properties of neutron star matter and to reexamine the (~-field effects in asymmetric nuclear matter. Our calculation shows that the stability conditions of the neutron star matter can be improved in presence of the δ-meson in the density-dependent models of the coupling constants. The EOS of nuclear matter strongly depends on the density dependence of the interactions.  相似文献   

7.
8.
杨芳  申虹 《中国物理 C》2008,32(7):536-542
We study the hadron-quark phase transition in the interior of neutron stars, and examine the influence of the nuclear equation of state on the phase transition and neutron star properties. The relativistic mean field theory with several parameter sets is used to construct the nuclear equation of state, while the  相似文献   

9.
10.
Neutron stars     
Neutron stars are laboratories for dense matter and gravitational physics. Observations of neutron stars from sources such as radio pulsars, low-mass X-ray binaries, X-ray bursts and thermally-emitting neutron stars are setting bounds to neutron star masses, radii, rotation rates, temperatures and ages. Mass measurements constrain the equation of state at the highest densities and set firm bounds to the highest possible density of cold matter. Radii constrain the equation of state in the vicinity of the nuclear saturation density and yield information about the density dependence of the nuclear symmetry energy. Laboratory measurements and theoretical studies of pure neutron matter are in remarkable agreement with observational bounds.  相似文献   

11.
利用非对称核物质状态方程对中子星的质量和半径的研究   总被引:1,自引:0,他引:1  
在温度、密度及同位旋相关的核物质状态方程的基础上,通过求解Tol-man-Oppenheimer?Volkoff方程得到了中子星的质量与中心密度的关系,发现随着中心密度的变化,中子星存在一个最大质量.同时计算结果表明,中子星的最大质量与核物质状态方程的不可压缩系数、有效质量及对称能强度系数等密切相关.对中子星半径的研究表明,较硬的核物质状态方程给出的中子星半径较大,而且较大的对称能强度系数和较大的核子有效质量也会给出较大的中子星半径.  相似文献   

12.
In this paper, we have investigated the structural properties of rotating neutron stars using the numerical RNS code and equations of state which have been calculated within the lowest order constrained variational(LOCV)approach. In order to calculate the equation of state of nuclear matter, we have used UV_(14) +TNI and AV_(18) potentials.We have computed the maximum mass of the neutron star and the corresponding equatorial radius at different angular velocities. We have also computed the structural properties of Keplerian rotating neutron stars for the maximum mass configuration, M_K, R_K, f_K and j_(max).  相似文献   

13.
The equations of state of the neutron star matter are calculated in the relativistic mean-field approximation with different hyperon coupling constants. The properties of neutron stars are studied by solving the Oppenheimer-Volkoff equation. It manifests the properties of neutron stars — change explicitly as different hyperon coupling constants are concerned.  相似文献   

14.
Neutron stars are studied in the framework of nuclear relativistic field theory. Hyperons and pions significantly soften the equation of state of neutron star matter at moderate and high density. We conjecture that they are responsible for the softening that is found to be crucial to the bounce scenario in supernova calculations. Hyperons reduce the limiting mass of neutron stars predicted by theory by one half solar mass or more, which is a large effect compared to the range in which theories of matter predict this limit to fall.  相似文献   

15.
We summarize the constraints on the equation of state of high-density nuclear matter derived from neutron star observations. The most stringent constraints are provided by the largest mass, the largest radius, the highest rotational frequency, and the maximum surface gravity observed for neutron stars. The combination of these constraints allows only nuclear equations of state which are quite stiff.  相似文献   

16.
陈晏军 《中国物理C(英文版)》2019,43(3):035101-035101-1
An extended Nambu-Jona-Lasinio(eNJL) model with nucleons as the degrees of freedom is used to investigate properties of nuclear matter and neutron stars(NSs),including the binding energy and symmetry energy of the nuclear matter, the core-crust transition density, and mass-radius relation of NSs. The fourth-order symmetry energy at saturation density is also investigated. When the bulk properties of nuclear matter at saturation density are used to determine the model parameters, the double solutions of parameters are obtained for a given nuclear incompressibility. It is shown that the isovector-vector interaction has a significant influence on the nuclear matter and NS properties, and the sign of isovector-vector coupling constant is critical in the determination of the trend of the symmetry energy and equation of state. The effects of the other model parameters and symmetry energy slope at saturation density are discussed.  相似文献   

17.
18.
《Annals of Physics》1987,179(2):272-293
Neutron star properties are computed in relativistic models that contain both hadron and quark degrees of freedom. Neutron matter is assumed to have a low-density phase described by quantum hadrodynamics (QHD) and a high-density phase described by quantum chromodynamics (QCD). Several different QHD models and approximations are employed; all use parameters that reproduce the binding energy and density of equilibrium nuclear matter. Calculated neutron star properties depend primarily on the high-density equation of state and cannot be inferred from the symmetry energy or compressibility of equilibrium nuclear matter. If interactions are neglected in the QCD phase, the density of the hadron-quark phase transition is determined by one free parameters, which is the energy/volume needed to create a “bubble” that confines the quarks and gluons. Observed neutron star masses do not constrain this parameter, but stable neutron stars with quark cores can exist only for a limited range of parameter values. When second-order gluon-exchange corrections are included in the QCD phase, these conclusions are unchanged, and the parameter values that lead to stable hadronquark stars are restricted even further.  相似文献   

19.
Ebbe M. Nyman   《Nuclear Physics A》1977,290(2):493-500
The possibility that neutron stars may possess an “abnormal” central region of the Lee-Wick type is discussed. It is found that when the abnormal equation of state includes quantum corrections and short-range repulsion as required in normal nuclear matter, the gravitational pressure in stable neutron stars is insufficient to induce a phase transition to abnormal matter.  相似文献   

20.
The equations ofstate of the neutron star matter are calculated in the relativistic mean-field approximation witl different hyperon coupling constants. The properties of neutron stars are studied by solving the OppenheimerVolkoff equation. It manifests the properties of neutron stars - change explicitly as different hyperon coupling constants are concerned.``  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号