首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
Although recently a growing number of reports demonstrate that topography or geometry of the substrate also plays an important role in the fate of the stem cells, most of these studies are usually completed by a few distinct patterns such as simple lines, posts, etc. As a result, there is a lack of quantitative analysis of the relationship between topographical variation and the differentiation of stem cells. Here, the effectiveness of topography variation is studied systematically in several microengineered substrates on osteogenic differentiation. It is found that the effectiveness of the osteogenic differentiation has a peak around 3 μm in the interval length of micropatterns.  相似文献   

2.
Sim WY  Park SW  Park SH  Min BH  Park SR  Yang SS 《Lab on a chip》2007,7(12):1775-1782
A new micro cell chip which can induce stem cells to differentiate into specific body cell types has been designed and fabricated for tissue engineering. This paper presents the test results of a micro cell stimulator which can provide a new miniaturized tool in cell stimulation, culture and analysis for stem cell research. The micro cell stimulator is designed to apply compressive pressure to the hMSCs (human mesenchymal stem cells) for inducing osteogenesis. The micro cell stimulator is based on the pneumatic actuator with a flexible diaphragm which consists of an air chamber and cell chambers. The hMSCs under cyclic compressive stimulation for one week were observed and assessed by monitoring CD90 (Thy-1), actin, alkaline phosphatase (ALP) and alizarin red expression. The results suggest that cyclic mechanical stimulation is attributed to the different phenomenon of cultured hMSCs in cell proliferation and differentiation. These results are important for the feasibility of the micro cell stimulator to provide the reduction of the necessary quantity of cells, process cost and the increase of the throughput.  相似文献   

3.
We establish two methods to deposit native biomembranes (human erythrocyte membranes and sarcoplasmic reticulum membranes) selectively onto biocompatible microtemplates. The first method utilizes UV photolithography to micropattern the regenerated cellulose, while the second uses the "stamping" of protein barriers onto homogeneous cellulose supports. The relatively simple methods established here allow for the position selective spreading of three-dimensional native cells into two-dimensional films, retaining the orientation and lateral density of transmembrane proteins in their native state.  相似文献   

4.
Krafft C  Salzer R  Seitz S  Ern C  Schieker M 《The Analyst》2007,132(7):647-653
Objective of this study is the novel application of Fourier transform infrared (FTIR) microscopic imaging to identify the differentiation state of individual human mesenchymal stem cells with or without osteogenic stimulation. IR spectra of several hundred single cells with lateral resolution of 5-10 microm were recorded using a FTIR imaging spectrometer coupled to a microscope with a focal plane array detector. A classification model based on linear discriminant analysis was trained to distinguish four cell types by their IR spectroscopic fingerprint. Without stimulation two cell types dominated, showing low or high levels of glycogen accumulation at the cell periphery. After stimulation, the protein composition in the cells changed and some cells started expressing calcium phosphate salts such as octacalciumphosphate, a precursor of the bone constituent hydroxyapatite. Few cells were identified which remained in their non-stimulated state. This study demonstrated for the first time that FTIR microscopic imaging can probe stem cell differentiation at the single cell level rapidly, non-destructively and with minimal preparation.  相似文献   

5.
Geometric control of stem cell differentiation rate on surfaces   总被引:2,自引:0,他引:2  
We develop a general methodology to create a patterned surface array that allows for the study of how the cell population, surface adhesion area, and pattern geometry combine to influence stem cell differentiation. We use a simple microfabrication technique to pattern human mesenchymal stem cells (hMSC's) on transparent surfaces and develop a new method to quantitate adipogenic differentiation. We found that the pattern geometry and therefore the cell population, rather than the cell adhesive area, influence the rate of adipogenic differentiation from hMSC's. Furthermore, the cells within the pattern behave more characteristically of a tissue than do individual cells because a certain critical threshold cell density is required to induce differentiation.  相似文献   

6.
Microfabrication-based modulation of embryonic stem cell differentiation   总被引:1,自引:0,他引:1  
Embryonic stem (ES) cells form spontaneous aggregates during differentiation, and cell-cell communication in the aggregates plays an important role in differentiation. The development of a controlled differentiation scheme for ES cells has been hindered by the lack of a reliable method to produce uniform aggregate sizes. Conventional techniques, such as hanging drop and suspension cultures, do not allow precise control over size of ES cell aggregates. To surmount this problem, we microfabricated adhesive stencils to make mouse ES (mES) cell aggregates of specific sizes ranging from 100 microm to 500 microm in diameter. With this technique, we studied the effect of the initial aggregate size on ES cell differentiation. After 20 days of induction of differentiation, we analyzed the stem cell populations using gene and protein expression assays as well as biochemical functions. Notably, we found that germ layer differentiation depends on the initial size of the ES cell aggregate. Among the ES cell aggregate sizes tested, the aggregates with 300 microm diameter showed similar differentiation profiles of three germ layers as embryoid bodies made using the "hanging drop" technique. The smaller (100 microm) aggregates showed the increased expression of ectodermal markers compared to the larger (500 microm) aggregates, while the 500 microm aggregates showed the increased expression of mesodermal and endodermal markers compared to the 100 microm aggregates. These results indicate that the initial size of the aggregate is an important factor for ES cell differentiation, and can affect germ layer selection as well as the extent of differentiation.  相似文献   

7.
In the last 10 years, mesenchymal stem cells (MSCs) have emerged as a therapeutic approach to regenerative medicine, cancer, autoimmune diseases, and many more due to their potential to differentiate into various tissues, to repair damaged tissues and organs, and also for their immunomodulatory properties. Findings in vitro and in vivo have demonstrated immune regulatory function of MSCs and have facilitated their application in clinical trials, such as those of autoimmune diseases and chronic inflammatory diseases. There has been an increasing interest in the role of MSCs in allogeneic hematopoietic stem cell transplantation (HSCT), including hematopoietic stem cell engraftment and the prevention and treatment of graft-versus-host disease (GVHD), and their therapeutic potential has been reported in numerous clinical trials. Although the safety of clinical application of MSCs is established, further modifications to improve their efficacy are required. In this review, we summarize advances in the potential use of MSCs in HSCT. In addition, we discuss their use in clinical trials of the treatment of GVHD following HSCT, the immunomodulatory capacity of MSCs, and their regenerative and therapeutic potential in the field of HSCT.  相似文献   

8.
The differentiation of stem cells into multi-lineages is essential to aid the development of tissue engineered materials that replicate the functionality of their tissue of origin. For this study, Raman spectroscopy was used to monitor the formation of a bone-like apatite mineral during the differentiation of human mesenchymal stem cells (hMSCs) towards an osteogenic lineage. Raman spectroscopy observed dramatic changes in the region dominated by the stretching of phosphate groups (950-970 cm(-1)) during the period of 7-28 days. Changes were also seen at 1030 cm(-1) and 1070 cm(-1), which are associated with the P-O symmetric stretch of PO(4)(3-) and the C-O vibration in the plane stretch of CO(3)(2-). Multivariate factor analysis revealed the presence of various mineral species throughout the 28 day culture period. Bone mineral formation was observed first at day 14 and was identified as a crystalline, non-substituted apatite. During the later stages of culture, different mineral species were observed, namely an amorphous apatite and a carbonate, substituted apatite, all of which are known to be Raman markers for a bone-like material. Band area ratios revealed that both the carbonate-to-phosphate and mineral-to-matrix ratios increased with age. When taken together, these findings suggest that the osteogenic differentiation of hMSCs at early stages resembles endochondral ossification. Due to the various mineral species observed, namely a disordered amorphous apatite, a B-type carbonate-substituted apatite and a crystalline non-substituted hydroxyapatite, it is suggested that the bone-like mineral observed here can be compared to native bone. This work demonstrates the successful application of Raman spectroscopy combined with biological and multivariate analyses for monitoring the various mineral species, degree of mineralisation and the crystallinity of hMSCs as they differentiate into osteoblasts.  相似文献   

9.
Interactions of gelatin and albumin with a photo-reactive diphenylamino-s-triazine bridged p-phenylene vinylene polymer (DTOPV) were examined by using surface plasmon resonance (SPR) spectroscopy to explore the effect of the polymer structure on protein coverage of DTOPV nanofilms. The SPR data revealed a significant increase of gelatin adsorption on UV-DTOPV nanofilms, while the adsorption of albumin was decreased by UV exposure in the time frame of the experiment. We also found that the selective adsorption of these proteins was highly dependent on the protein concentration; the highest selectivity of protein adsorption was obtained at the lowest concentration (3.5 μg ml(-1)), while no selective adsorption was confirmed at high concentrations (350 and 1000 μg ml(-1)). The selective attachment of mesenchymal stem cells (MSCs) was directly correlated with the selective adsorption of these proteins onto DTOPV nanofilms. The MSCs attachment onto UV-DTOPV films was promoted with only small mass coverage of gelatin, which led to MSC patterning onto the patterned DTOPV nanofilms successfully. The role of cell adhesion proteins that we found in this study will be a clue to elucidate the complex response of biomolecules on functional polymer nanolayers, and contribute to build up biocompatible surfaces on various advanced materials for the sake of cell engineering and medical implants.  相似文献   

10.
A specially designed electroconductive collector enables the electrospinning of P-NFM composed of areas of parallel/uniaxially aligned fibers and areas of random/orthogonal nanofiber distribution. The biological relevance of P-NFM is demonstrated using hBMSCs as an autologous cell source. The structures induce cell orientation along the uniaxially aligned fibers, mainly during earlier culturing periods under basal and osteogenic differentiation conditions. The microtopography of the P-NFM also controls the deposition of mineralized extracellular matrix along the pre-defined fiber direction. Genotypic characterization confirms the successful differentiation into the osteogenic lineage.  相似文献   

11.
12.
Stem-cell-based neural regeneration has received significant attention, as it has potential to restore functionality to diseased or damaged neural tissues that have a limited ability to self-repair or regenerate. Culturing neural stem cells (NSCs) on hydrogel substrates has been shown to facilitate differentiation to neural progenitors, but this has only been achieved on very soft hydrogels, greatly increasing the difficulty of manufacture and limiting their wide applications. Here, we realized the differentiation of NSCs to neural and glial progenitors on high-strength hydrogels. Hydrogen-bonding-strengthened conductive hydrogels (PVV-PANI) were synthesized through one-pot copolymerization of 2-vinyl-4,6-diamino-1,3,5-triazine, 1-vinylimidazole and polyethylene glycol diacrylate, followed by post-coating with polyaniline (PANI). Diaminotriazine-diaminotriazine hydrogen bonding dramatically increases their mechanical strength, while copolymerization with VI pronouncedly promotes the adsorption of PANI particles, endowing the hydrogels with electrical conductivity. These hydrogels exhibit tensile strengths up to 1.16 MPa, a 559% breaking strain, a 9.9 MPa compressive strength and up to 16.7 mS/cm conductivity. Importantly, PVV-PANI hydrogels support the attachment, proliferation, and differentiation of NSCs, and allow the efficient induction of neural and glial differentiation via electrical stimulation. This work demonstrates high-strength conductive hydrogels can serve as an electroactive soft-wet platform for modulating the specific differentiation of NSCs, a significant step towards cell-based therapies for neurological diseases.  相似文献   

13.
Sphingosylphosphorylcholine (SPC) induces differentiation of human adipose tissue-derived mesenchymal stem cells (hASCs) into smooth muscle-like cells expressing α-smooth muscle actin (α-SMA) via transforming growth factor-β1/Smad2- and RhoA/Rho kinase-dependent mechanisms. 3-Hydroxy-3-methylglutaryl- coenzyme A reductase inhibitors (statins) have been known to have beneficial effects in the treatment of cardiovascular diseases. In the present study, we examined the effects of simvastatin on the SPC-induced α-SMA expression and Smad2 phosphorylation in hASCs. Simvastatin inhibited the SPC-induced α-SMA expression and sustained phosphorylation of Smad2 in hASCs. SPC treatment caused RhoA activation via a simvastatin-sensitive mechanism. The SPC-induced α-SMA expression and Smad2 phosphorylation were abrogated by pretreatment of the cells with the Rho kinase inhibitor Y27632 or overexpression of a dominant negative RhoA mutant. Furthermore, SPC induced secretion of TGF-β1 and pretreatment with either Y27632 or simvastatin inhibited the SPC-induced TGF-β1 secretion. These results suggest that simvastatin inhibits SPC-induced differentiation of hASCs into smooth muscle cells by attenuating the RhoA/Rho kinase-dependent activation of autocrine TGF-β1/Smad2 signaling pathway.  相似文献   

14.
Icariin had been reported as a potential agent for osteogenesis, but the dose-effect relationship needed further research to realize the clinical application of icariin. We isolated and purified human bone mesenchymal stem cells (hBMSCs) and stimulated them with different concentrations of icariin. The cytotoxicity of icariin was evaluated by the methylthiazolytetrazolium (MTT) assay method. The proliferation and osteogenic differentiation of such hBMSCs were investigated for different concentrations of icariin. We found that icariin had a dose-dependent effect on the proliferation and osteogenic differentiation of hBMSCs in a suitable concentration range from 10(-9) M to 10(-6) M, but at concentrations above 10(-5) M, the cytotoxicity limited its use. The extremely low cost of icariin and its high abundance make it appealing for bone regeneration.  相似文献   

15.
We report a simple method to confine transmembrane cell receptors in stripe micropatterns of a lipid/lipopolymer monolayer, which are formed as result of the transfer onto a solid substrate. The stripes are aligned perpendicular to the meniscus, whose periodicity can systematically be tuned by the transfer velocity. This strongly suggests the dominant role of the cooperative interaction between the film and substrate. Selective fluorescence labeling of lipids and lipopolymers confirms that the observed patterns coincide with the demixing of two species. Covalent coupling of polymer headgroups enables us to use the stripe patterns as a support for a lipid bilayer membrane. Spreading of lipid vesicles with platelet integrin alphaIIbbeta3 on a self-assembled membrane micropattern demonstrates that cell adhesion receptors are selectively incorporated into the lipopolymer-rich region. The method established here provides us with a tunable template for the confinement of receptor proteins to geometrically control the cell adhesion.  相似文献   

16.
17.
Cell-based therapies for wound repair are limited by inefficient delivery systems that fail to protect cells from the acute inflammatory environment. Here, a biomimetic hydrogel system is described that is based on the polymer pullulan, a carbohydrate glucan known to exhibit potent antioxidant capabilities. It is shown that pullulan hydrogels are an effective cell delivery system and improve mesenchymal stem cell survival and engraftment in high-oxidative-stress environments. The results suggest that glucan hydrogel systems may prove beneficial for progenitor-cell-based approaches to skin regeneration.  相似文献   

18.
Mesenchymal stem cell (MSC) therapy is an emerging treatment strategy to counteract metabolic syndromes, including obesity and its comorbid disorders. However, its effectiveness is challenged by various factors in the obese environment that negatively impact MSC survival and function. The identification of these detrimental factors will provide opportunities to optimize MSC therapy for the treatment of obesity and its comorbidities. Dysregulated production of adipokines, a group of cytokines and hormones derived from adipose tissue, has been postulated to play a pivotal role in the development of obesity-associated complications. Intriguingly, adipokines have also been implicated in the modulation of viability, self-renewal, proliferation, and other properties of MSC. However, the involvement of adipokine imbalance in impaired MSC functionality has not been completely understood. On the other hand, treatment of obese individuals with MSC can restore the serum adipokine profile, suggesting the bidirectionality of the adipokine–MSC relationship. In this review, we aim to discuss the current knowledge on the central role of adipokines in the crosstalk between obesity and MSC dysfunction. We also summarize recent advances in the use of MSC for the treatment of obesity-associated diseases to support the hypothesis that adipokines modulate the benefits of MSC therapy in obese patients.Subject terms: Stem cells, Cell biology  相似文献   

19.
20.
The objective of this study was to evaluate the attachment, proliferation, and differentiation of rat mesenchymal stem cells (MSC) toward the osteoblastic phenotype seeded on polypyrrole (PPy) thin films made by admicellar polymerization. Three different concentrations of pyrrole (Py) monomer (20, 35, and 50 x 10(-3) M) were used with the PPy films deposited on tissue culture polystyrene dishes (TCP). Regular TCP dishes and PPy polymerized on TCP by chemical polymerization without surfactant using 5 x 10(-3) M Py, were used as controls. Rat MSC were seeded on these surfaces and cultured for up to 20 d in osteogenic media. Surface topography was characterized by atomic force microscopy, X-ray photoelectron spectroscopy, and static contact angle. Cell attachment, proliferation, alkaline phosphatase (ALP) activity, and calcium content were measured to evaluate the ability of MSC to adhere and differentiate on PPy-coated TCP. Increased monomer concentrations resulted in PPy films of increased thickness and surface roughness. PPy films generated by different monomer concentrations induced drastically different cellular events. A wide spectrum of cell attachment characteristics (from excellent cell attachment to the complete inability to adhere) were obtained by varying the monomer concentration from 20 m to 50 x 10(-3) M. In particular the 20 x 10(-3) M PPy thin films demonstrated superior induction of MSC osteogenicity, which was comparable to standard TCP dishes, unlike PPy films of similar thickness prepared by chemical polymerization without surfactant. Adhesion of mesenchymal stem cells on tissue culture plates (TCP) coated with polypyrrole thin films made by admicellar polymerization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号